Что такое физика и какие задачи и задания она решает

Что такое физика и какие задачи и задания она решает

Преподаватель выездных олимпиадных школ «Фоксфорда» и МФТИ. Преподаватель вечерней физико-технической школы при МФТИ.

Как вы пришли в профессию?

Сначала я планировал просто подрабатывать репетиторством на первых курсах университета. Последние три года учёбы в школе специально сохранял полезные учебные материалы — конспекты, тетради, пособия, — чтобы использовать в преподавании. А потом втянулся и выбрал карьеру педагога, несмотря на другие перспективы, которые даёт высшее образование МФТИ.

Какие качества ценны для педагога?

Лично я люблю учителей, которые не только понятно объясняют, но и устанавливают с ребёнком близкий контакт. Круто, если ты можешь поговорить с преподавателем на сторонние темы.

Конечно, без качественного владения дисциплиной и умения объяснять — никуда. Но если педагог становится ребёнку другом — для меня это критерий высшего пилотажа.

В чём главная сложность изучения физики?

Сложнее всего поверить, что физика — это просто. Многие школьники боятся физики как огня — а на самом деле физика гораздо легче, скажем, курса математики.

В физике легко проводить параллели и аналогии с реальной жизнью. Большинство законов интуитивно понятнее, чем сложные доказательства и теоремы в математике.

Физика — это просто. Всегда говорю ученикам: «Сейчас вы сами увидите, что всё гораздо проще, чем казалось».

Как физика может пригодиться в жизни тем, кто не поступает на физфак или мехмат?

Физика — везде. Она вокруг нас! Поэтому знания из школьного курса нужны всем — даже гуманитариям.

С помощью физики можно вычислить, сколько килограмм дров нужно, чтобы затопить печь в деревенском доме, или сварить походный обед в лесу в котелке. Физика объясняет, почему масло и вода не смешиваются, если добавить одно в другое, а остаются на двух уровнях.

Если дома нет весов, а они нужны, знания физики помогут соорудить простую конструкцию рычажных весов из бумаги, картона, бутылок и других подручных средств.

Когда ты разбавляешь чай холодной водой, чтобы поскорее остыл, — зная физику, сможешь вычислить, сколько именно налить воды для комфортной температуры. А ещё физика подскажет, за какое время закипит чайник определённой мощности.

Освоив курс физики, понимаешь, сколько хранятся те или иные продукты при разных температурах. Сколько градусов в холодильнике, а сколько в морозилке, и почему. И многое другое!

Помимо базового, в «Фоксфорде» я веду три курса экспериментальной физики. Там мы на каждом занятии ставим опыты. Это позволяет ребятам ещё лучше понять, что физика — и есть наша жизнь.

Чем занятия в онлайне отличаются от обычных?

До «Фоксфорда» я в основном преподавал очно. Но мне удалось быстро переключиться на формат дистанционки. Главное, как мне показалось, — это научиться общаться с учениками в чате. Если дети чувствуют, что ты общаешься и слышишь их, разница с очным занятием минимальна.

В онлайне немного труднее отследить, все ли ученики участвуют в уроке. Поэтому я привлекаю внимание к сложным темам и прямо говорю: «Так, сейчас все слушаем внимательно! Готовы?». Важно сконцентрировать внимание ребёнка на том, что ты объясняешь.

Иногда использую лайфхаки — вставляю в презентацию популярный у подростков мем, прыгаю на 360 градусов, показываю тенью собачку. Что угодно, что привлечёт внимание ребёнка и заставит формулу, которую мы проходим, врезаться в мозг.

Шрек вместо кубика и блоков

В целом онлайн-образование эффективней очного. Ты тратишь меньше времени, никуда не ездишь. Сидишь с комфортом дома, в удобных шортах и футболке. Учишь, что нужно именно тебе.

Есть ли минусы у домашнего образования?

На домашней форме обучения приходится уделять больше внимания социализации ребёнка. Если школьник осваивает программу на дому, он не взаимодействует с коллективом сверстников на ежедневной основе.

Но нехватку общения легко восполнить секциями, кружками по интересам, экскурсиями, детскими лагерями. Тогда ребёнок и получает качественное образование, и развивается в социальном плане.

Другой минус — трудности с концентрацией у младших подростков. Если в обычной школе их дисциплинирует формализованная обстановка, то на онлайн-уроке дети полностью расслабляются и легко отвлекаются. Допустим, в кадре пробежала кошка — всё, внимание переключилось.

Здесь помогает интерактив и подключение игровых элементов. Да и просто взросление — старшие классы уже легче фокусируются на теме онлайн-занятия.

Что делать, если физика не даётся ребёнку вообще?

Часто проблема не в ребёнке, а в подаче материала. Если педагог объясняет монотонно и занудно, а учебник написан заумным академическим языком — школьник, который и так убеждён в сложности предмета, никогда не подступится.

Поэтому важно найти преподавателя, который объясняет максимально доходчиво. Перед тем как ввести понятие или формулу, я станцую, покажу видео, нарисую картинку или приведу пример из жизни. Потом поясню суть простыми словами. И только после этого назову термин.

Ещё одна причина, почему с физикой возникают проблемы, — многое в курсе физики из государственной программы завязано на математике. Например, необходимо делать вычисления или выражать из одного другое.

В обычной школе физика идёт вперёд математики — бывает, что тема, которая уже изучается в курсе физики, основывается на теме из математики, которую дети не проходили. В таком случае стоит либо менять школу, либо подтягивать математику отдельно.

В чём секрет успешного освоения курса физики?

Простая, но эффективная стратегия заключается в повторении материала. Это 70% успеха — особенно на уровне старших классов.

Даже если ты усвоил на занятии абсолютно всё, материал без повторения выветрится к следующему уроку. Одно дело — понять, что тебе сказали простыми словами. Другое — применить новые знания в домашней работе. Бывает, что на уроке понял объяснения, а потом смотришь на задачу и не понимаешь, что происходит.

Нужно перечитывать учебник и конспекты после занятия, полностью выполнять домашнее задание, пробовать дополнительные упражнения. Тогда информация уложится в голове. А главное, научишься применять знания на практике.

Стоит ли сдавать физику на ОГЭ?

Я не рекомендую сдавать физику в девятом классе. В экзамен нынешнего формата включены темы, которые проходят только в 10 и 11 классах. Девятиклассникам их преподают очень быстро, поверхностно и в укороченном варианте, чтобы те могли хоть как-то написать ОГЭ, а в следующие два года разбирают подробно.

Читайте также:
Замена подшипника задней ступицы своими руками

Например, магнетизм — сложная для изучения тема. Тяжело представить, что происходит на уровне электронов, куда они летят и зачем. Девятикласснику будет сложно осваивать такие темы самостоятельно. А школьной программы совершенно недостаточно.

Чтобы успешно сдать ОГЭ по физике, нужно быть готовым самому разбирать темы старших классов, либо заниматься с репетитором. Решайте тесты и помните, что часть знаний в школе не дадут вообще. Важно рассчитывать силы.

Ещё лайфхак — смотреть передачу «Галилео», чтобы легко решать задачи на применение и знание физики в жизни.

Как подготовиться к ЕГЭ по физике?

Сначала определитесь с целью. Если ребёнку требуется только сдать государственный экзамен — это одно. А если хочется реально понимать физику, то необходима иная стратегия подготовки.

В первом случае — монотонно решайте тесты. Если задача состоит в том, чтобы сдать экзамен и забыть про физику, то такой подход сохранит силы и энергию.

Во втором случае — метьте на олимпиады. Фишка в том, что олимпиадные задачи по физике — это в большинстве случаев сложные задачи по школьному курсу. Для написания олимпиад по физике не требуются дополнительные знания. Скорее, нужно научиться видеть альтернативные подходы и методы решений.

Если хотите по-настоящему понимать физику, фокусируйтесь на олимпиадных задачах и участвуйте в конкурсах. А за решение непосредственно тестов ЕГЭ можно взяться гораздо позже.

Даже если вы ничего не займёте на олимпиаде — сам факт участия и подготовки даст огромную базу. Структура ЕГЭ и задачи госэкзамена покажутся легче. Я рекомендую начинать участвовать в интеллектуальных конкурсах уже с седьмого класса. Это развивает голову во всех направлениях.

В каких олимпиадах обязательно нужно принять участие?

Проще всего подготовиться к Физтеху. Как правило, там адекватно сформулированы задания. Ещё есть «Ломоносов», «Покори Воробьёвы горы!», школьный этап Всеросса.

Из олимпиад на любителя — МОШ (Московская олимпиада школьников). Основная сложность там заключается в формулировке заданий.

Когда я участвовал в олимпиадах, для меня было кайфом разобраться в заковыристом условии и понять суть задачи. Но если не готовы, лучше начать с конкурсов попроще.

Что посоветуете школьнику для поступления в престижные технические вузы и специальности, связанные с физикой?

Как можно больше учиться самому. Курсы и репетиторы — это хорошо. Но чем регулярнее ты занимаешься самостоятельно, тем больших высот достигнешь. В конце концов, всё зависит от тебя. Поступить на бюджет в престижный вуз — реально как с подготовкой под руководством профессионалов, так и без.

Рекомендую использовать все возможности вокруг. Просите дополнительные задания у учителя. Участвуйте в олимпиадах. Занимайтесь по бесплатным ресурсам в интернете. Смотрите тематические видео на Youtube.

Ещё советую попробовать поступить в сильный физмат-лицей после восьмого или девятого класса — это колоссальный опыт, который полностью меняет человека. В лицеях учителя знают каждого ребёнка. Это большая и дружная семья. Ты каждый день варишься в коллективе интеллектуально развитых людей и быстро растёшь.

Чем вы увлекаетесь?

Со школы занимаюсь футболом, баскетболом, волейболом, плаванием. Играл в сборной МФТИ по футболу. Сейчас учусь в магистратуре, капитан факультетской команды. Прошёл школу вожатых — учу подопечных «вожатить». Играю на гитаре — научился по роликам в интернете. Даже пишу свои песни, но в публичный доступ не выкладываю.

Сейчас читаю Ричарда Фейнмана «Вы, конечно, шутите, мистер Фейнман!». Крутые рассказы о жизни известного и талантливого физика. Написано простым языком — поэтому доступно не только специалистам, но и массовому читателю.

Люблю сериалы — например, «Ходячие мертвецы» и «Остаться в живых».

Что пожелаете ученикам «Фоксфорда»?

Как можно больше пробуйте, пока учитесь в школе, и ищите своё.

Не бойтесь отказываться от желаний, навязанных социумом. Если родители отправили вас учить то, чего вы не хотите, — найдите смелость напрямую поговорить с ними и рассказать о настоящих желаниях.

Главное — получать кайф от того, что делаешь! И этот кайф нужно найти. Не тратьте жизнь на то, что напрочь не нравится.

У нас вы сможете учиться в удобном темпе, делать упор на любимые предметы и общаться со сверстниками по всему миру.

Попробовать бесплатно

Интересное по рубрике
Найдите необходимую статью по тегам

Подпишитесь на нашу рассылку
Мы в инстаграм

Домашняя онлайн-школа
Помогаем ученикам 5–11 классов получать качественные знания в любой точке мира, совмещать учёбу со спортом и творчеством

Посмотреть

Рекомендуем прочитать

Реальный опыт семейного обучения

Звонок по России бесплатный

Пишите нам письма

Посмотреть на карте

Если вы не нашли ответ на свой вопрос на нашем сайте, включая раздел «Вопросы и ответы», закажите обратный звонок. Мы скоро свяжемся с вами.

Как подготовиться к ЕГЭ по физике 2022? Структура экзамена

Максим Устюжанин

ЕГЭ по физике пугает многих выпускников. На деле он не такой сложный, главное — разобраться со структурой. В этой статье поговорим о том, как подготовиться к ЕГЭ по физике 2022, из каких разделов состоит экзамен и какие темы нужно изучить, чтобы сдать его.

Коротко о структуре ЕГЭ по физике 2022

Экзамен состоит из 2 частей: I часть с кратким ответом и II часть с развернутым ответом. Всего в ЕГЭ 30 заданий, которые разделены на 4 раздела. Чтобы хорошо подготовиться к экзамену, важно ориентироваться в том, как он устроен: какие темы входят в каждый раздел, каких заданий больше, а каких меньше.

Давайте взглянем на таблицу и сделаем выводы:

Максимальное количество первичных баллов — 54

  • Приносит 34 балла, то есть ⅔ баллов всего экзамена.
  • 23 задания с кратким ответом
  • В ответе нужно указать лишь число
  • Приносит 20 баллов, что составляет ⅓ баллов экзамена
  • 7 заданий с развернутым ответом
  • Решения нужно подробно расписать по критериям ЕГЭ

Разделы ЕГЭ по физике 2022

  • Механика — один из самых больших разделов на ЕГЭ. Он составляет около трети всего экзамена.
  • Электродинамика — еще один большой раздел по количеству баллов. Она также составляет около трети всего экзамена.
  • Молекулярная физика занимает третье место. Около 25% баллов на ЕГЭ можно получить именно за нее.
  • Квантовая физика замыкает наш список. В сумме все задания по квантовой физике могут принести около 10% баллов.
Читайте также:
Замена заднего редуктора моста lada vesta (лада веста) в москве - сервис «мир акпп»

Иными словами, чтобы сдать ЕГЭ по физике на высокий балл, нужно хорошо разбираться и в структуре экзамена, и в каждом из разделов, которые в него входят. Если не знать, как все устроено и что именно требуется для решения заданий, то можно завалить ЕГЭ и не поступить на бюджет.

Чтобы этого не произошло, на своих занятиях по подготовке к ЕГЭ я разбираю с учениками каждый раздел экзамена и все критерии. Мы разбираемся, какие знания проверяют составители в каждом из заданий и учимся правильно оформлять ответы. Очень важная часть подготовки — научиться внимательно читать формулировки заданий и правильно их понимать. Это одна из ловушек экзаменаторов, на которые попадаются очень многие.

Если вы хотите подготовиться к ЕГЭ по физике 2022 на высокий балл, записывайтесь на мои занятия. Мы вместе разберемся со всеми непонятными заданиями, и я сделаю так, что все задачки по физике вы будете щелкать как орешки 😉💪

Какие задания входят в ЕГЭ по физике?

Здесь вам на помощь приходят документы с официального сайта ФИПИ: кодификатор, демоверсия и спецификация.

Кодификатор – это краткий перечень всех тем, законов и формул, которые включены в экзамен. В формулах важно ориентироваться и понимать, какие формулы, в каком разделе и когда используются.

Все формулы из кодификатора нужно знать наизусть.

Демоверсия — типовой вариант ЕГЭ. Он показывает уровень экзамена и ориентировочную сложность заданий.

Спецификация — это документ, описывающий структуру экзамена и разбалловку.

Какие темы на ЕГЭ по физике 2022 самые важные?

В физике есть темы, которые встречаются на каждом шагу. Это тот необходимый минимум знаний, который будет применяться в каждом разделе. Для всех моих учеников, отлично освоивших эти темы, изучение физики стало гораздо легче и приятнее.

1. Силы

В самом начале подготовки к ЕГЭ по физике важно научиться правильно расставлять силы, записывать второй закон Ньютона в векторном виде, а потом проецировать силы на оси и записывать второй закон Ньютона в скалярном виде.

2. Второй закон Ньютона

Без этого закона мы на ЕГЭ по физике будем как без рук. Он будет применяться почти в каждой второй задаче.

3. Энергия и закон сохранения энергии (ЗСЭ)

Перераспределение энергии и закон сохранения энергии встречаются в каждом разделе. Сначала мы знакомимся с ними в механике, а потом встречаем почти в каждой теме.

  1. I начало термодинамики в молекулярной физике — это вид ЗСЭ
  2. ЗСЭ встречается в электродинамике в задачах на электрические цепи
  3. Уравнение Эйнштейна для фотоэффекта в квантовой физике — это тип ЗСЭ
4. Работа

Работа — это форма энергии. Она вам понадобится:

  1. В механике (механическая работа)
  2. В молекулярной физике (работа газа и работа над газом)
  3. В электродинамике (работа электрического поля)

Поэтому советую вам основательно разобраться с этим понятием.

5. Движение по окружности

На эту тему стоит обратить особое внимание. Она появляется в задачах:

  1. На магнетизм и силу Лоренца
  2. На гравитацию
  3. На астрофизику

Есть частый тип задания с развернутым ответом на фотоэффект. В такой задаче электрон попадает в магнитное поле и начинает двигаться по окружности.

План успешной подготовки к ЕГЭ по физике

При подготовке к экзамену не пренебрегайте ничем. Решайте и первую часть, и вторую.

Двигайтесь по материалу в соответствие с кодификатором:

  • Механика
  • Молекулярная физика
  • Электродинамика
  • Квантовая физика

Одновременно с изучением теории. Как только вы выучили одну тему, сразу же начинайте тренироваться на задачах. Именно так вы запоминаете формулы и законы.

ЕГЭ — это сугубо практический экзамен, поэтому важно практиковаться, практиковаться и еще раз практиковаться. Всю теорию нужно уметь применять на практике.

I часть ЕГЭ по физике

Многие школьники готовятся только ко второй части экзамена. Думают, если вторую часть они могут решать, то и первая просто решится… Такие ученики ошибаются в простых заданиях, а для поступления в вуз мечты важен каждый балл! Ни в коем случае не стоит недооценивать первую часть.

Не стоит считать, что первая часть слишком простая и к ней можно не готовиться. Если пренебрежительно относиться к первой части, экзамен можно завалить, даже если вы решите всю вторую часть. Помните, что первая тестовая часть — это ⅔ всего экзамена.

В этой статье мы уже рассказывали, что можно набрать 80+ баллов, если сделать полностью первую часть, а вторую решить лишь на 40%.

Первую часть нужно атаковать постепенно. Начать с изучения механики, потом приниматься за молекулярную физику, за электродинамику, и в последнюю очередь за квантовую физику.

В первой части есть задания базового уровня на 1 балл и повышенного уровня на 2 балла.

Задания базового уровня на 1 балл

Обычно такие задания решаются применением 1-2 физических законов и формул. Именно с заданий базового уровня я советую начинать. Как только вы прошли одну тему по физике, сразу же приступайте к решению задач формата ЕГЭ по этой теме!

Задания повышенного уровня на 2 балла

Первая часть ЕГЭ по физике включает в себя задания трех типов:

  • Выбор 2 из 5 утверждений
  • Анализ изменения величин
  • Установление соответствия

Подробные разборы каждого типа заданий читайте в нашей предыдущей статье.

Стоит отметить, что в ЕГЭ можно все аргументировать, объяснить или опровергнуть. Как на дебатах. Только способ объяснения — это формулы и математические вычисления.

II часть ЕГЭ по физике

Распространенный миф: «II часть ЕГЭ по физике очень сложная, и у меня не получится к ней подготовиться». Часто мои новые ученики думают именно так, и я всегда развеиваю этот миф.

Читайте также:
Замена втулок стабилизатора lada 21122 (ваз 21122) своими руками

В задачах с развернутым ответом есть приемы и алгоритмы, которые часто встречаются. Побольше практикуйтесь и запоминайте эти приемы. Задачи второй части можно и нужно решать.

Когда начать решать задачи с развернутым ответом из II части? После освоения теории. Чем раньше — тем лучше. Сначала отработайте знания на более легких заданиях. Как только научитесь применять формулы в задачах на 1 балл, сразу же переходите ко второй части.

Обычно при решении задач с развернутым ответом нужно применить от 2 до 4 формул и законов. Каждый из этих законов по отдельности использовать просто, но применить их в комбинации — это уже довольно сложная задача для учеников.

Лайфхаки решения II части

Во второй части ЕГЭ по физике есть стандартных приемов к решению задач, которые нужно знать каждому. Если вы их поймете и запомните, то будете решать часть КИМа стабильно хорошо.

1. Закон сохранения импульса + закон сохранения энергии

В механике эти два закона часто применяются вместе. Эти законы помогают решить задачи на соударения, на слипание и на взрывы тел. Пример:

2. Закон сохранения энергии + второй закон Ньютона

Эта связка особенно часто встречается. Например, она помогает решать задачи на аттракционы трюк «мертвую петлю». Еще понадобятся знания движения по окружности. Пример:

3. Второй закон Ньютона + уравнение Менделеева-Клапейрона

Эти законы связывают механику и молекулярную физику. Они помогают решать задачи на цилиндры с поршнями. Пример:

4. Уравнение Менделеева-Клапейрона + сила Архимеда + второй закон Ньютона

С помощью этой связки решаются задачки на воздушные шарики. Пример:

5. Фотоэффект + сила Лоренца в магнитном поле + движение по окружности

Обычно задания на электродинамику и квантовую физику пугают школьников, поэтому рекомендую прочитать статью, где мы подробно разбираем этот тип задач.

На самом деле, все это — лишь малая часть лайфхаков, которые нужно знать, чтобы сдать ЕГЭ по физике 2022 на высокий балл.

Когда я готовлю своих учеников к ЕГЭ, мы разбираем все из них. Причем сюда можно отнести не только лайфхаки по решению заданий, но и лучшие способы оформления решений. Часто бывает, что формулировка ответов может стоить выпускнику нескольких баллов — а все из-за того, что он или она недостаточно четко сформулировал(а) мысль.

Чтобы этого не случилось с вами, приходите на мои занятия по подготовке к ЕГЭ по физике 2022. Мы еще подробнее разберем структуру экзамена и научимся быстро и правильно решать все задачи. Жду вас!

Что такое физика и какие задачи и задания она решает

Физика — это наука, изучающая законы природы на самом глубоком уровне. Не случайно большинство величин, характеризующих окружающие нас вещи в целом (масса, длина, температура), называются физическими величинами.

Физика https://www.evkova.org/fizika является основой всех естественных наук и необходима для изучения химии, биологии, географии, геологии и астрономии. Для понимания физики не требуется большого знания других естественных наук, но требуются знания и навыки по математике и другим предметам.

В настоящее время физика считается наиболее развитой и формализованной (т.е. описанной с помощью математических средств) естественной наукой. В целом, физика является количественной наукой: например, мы можем рассчитать, сколько времени потребуется, чтобы вскипятить чайник с водой.

Физика говорит нам, что вся материя состоит из атомов и что Вселенная постоянно расширяется. Она объясняет, почему Земля вращается вокруг Солнца, почему уголь черный, а снег белый, и почему вода при нагревании превращается в воду.

Физика делится на множество областей. Наиболее важной из них является механика, которая изучает законы движения объектов. Здесь мы рассматриваем такие понятия, как скорость, расстояние и ускорение. Движение вызывается действием сил, и именно изучение этого является предметом механики. Он работает с такими понятиями, как сила, масса, импульс, энергия и мощность.

  • Тепловые процессы рассматриваются в термодинамике и статистической физике. Поведение газов вызывает большой интерес из-за их способности расширяться при нагревании и тем самым выполнять полезные функции. Чтобы понять тепловые процессы, нам нужно многое знать о молекулярной структуре вещества.
  • Электромагнетизм изучает явления, связанные с магнетизмом и электричеством, а оптика изучает распространение света, который является электромагнитной волной.
  • Квантовая физика изучает законы микроскопического мира, а космология — законы Вселенной. Существуют также узкоспециализированные области, такие как материаловедение и кристаллография.

История предмета физика

Слово «физика» возникло в глубокой древности. Основателем физики был ученый Аристотель (384-322 гг. до н.э.). Он написал книгу под названием «Физика», чтобы изучать природу. Таким образом, греческое слово «физика» — это наука о природе. Примеры физики: свет, звук, лед, радуга (Источник: unsplash.com)

Природа — это все живое и неживое, что нас окружает. Все, что связано с любым природным объектом, о котором можно судить на основе человеческого опыта, является материальным. В классе — парты, стулья, учебники, карандаши и ручки; в столовой — хороший обед или завтрак, аппетитный запах; на улице — машины, люди, здания, ветер, ручей после дождя; в доме — знакомые предметы, мебель; в лесу — деревья, кусты, трава, птицы, животные.

Примеры тел: велосипед, сумка с вещами, карандаш, кусок ткани, ножницы Эти и другие вещи называются «телами». Тела состоят из материи. Например, линейка может быть изготовлена из дерева, железа или пластика. Так, железо, дерево и пластик — все это физические субстанции.

Примеры веществ в ведре: дерево, металл, пластик. Некоторые тела состоят из одного вещества, а некоторые — из нескольких. Например, бронза — это сплав меди и олова; тело, состоящее из одного вещества, называется «однородным», а тело, состоящее из нескольких веществ, называется «неоднородным». Вещество можно увидеть, почувствовать и зафиксировать с помощью пяти органов чувств.

Однако есть вещи, которые можно зарегистрировать только с помощью инструментов. Это поле. Именно в этой области определяется гравитационное притяжение объектов к Земле и гравитационное притяжение планет к Солнцу. Телебашня в Останкино и телевизор дома также связаны физическим полем. Магнитное поле, окружающее Землю Понятия «материя» и «магнитное поле» более глубоко изучаются в старших классах.

Читайте также:
Снятие и установка заднего моста на автомобиле ваз 2106

Задачи и значение физики сегодня

Физика — это наука в составе естественных наук и, в общем смысле, часть естественных наук. Его предметом является материя в форме полей и материя в общей форме ее движения. Предмет физики также включает фундаментальные природные взаимодействия, которые управляют движением материи.

Существуют законы, которые являются общими для всех материальных систем, и они называются физическими законами. Физику часто называют фундаментальной наукой, поскольку другие естественные науки (биология, химия, геология) описывают лишь определенный класс материальных систем, подчиняющихся физическим законам.

Предметом химии является атом, вещества, из которых он состоит, и превращение одного вещества в другое. Химические свойства вещества определяются физическими свойствами молекул и атомов, которые описываются в таких дисциплинах физики, как электромагнетизм, термодинамика и квантовая физика.

Физика тесно связана с математикой, поскольку она предоставляет механизм для максимально точной формулировки физических законов. Все физические законы формулируются, по большей части, в виде уравнений. И в этом случае, более чем в любой другой науке, используется самая сложная часть математики. И наоборот, потребности физических наук стимулировали развитие большинства математических дисциплин.

Значение физической науки в современном обществе очень велико. Все, что отличает современное общество от прошлых веков, появилось благодаря применению физических открытий.

Изучение электромагнетизма привело к появлению стационарного телефона и мобильного телефона. Открытие термодинамики привело к появлению автомобиля, а развитие электроники — к появлению компьютерных технологий.

Фотоника позволила создать радикально новые компьютерные и фотонные технологии, которые быстро заменяют современную электронику и устройства. Развитие газодинамики также привело к появлению самолета и вертолета.

Наши знания о физических процессах, которые постоянно происходят в природе, углубились и расширились. Большинство открытий, старых и новых, имеют техническое и экономическое применение, и многие из них используются в промышленности.

Современный исследователь постоянно сталкивается с новыми вызовами и головоломками. По мере появления новых явлений приходится разрабатывать новые физические теории для их объяснения. Несмотря на многие полученные знания, современная физика все еще не может объяснить все природные явления.

Общенаучные основы методов физики разрабатываются в методологии науки и в теории познания.

“Значение решения задач при обучении физики”
статья по теме

Скачать:

Вложение Размер
znachenie_resheniya_zadach_pri_obuchenii.doc 214.5 КБ

Предварительный просмотр:

Значение решения задач при обучении.

В самом широком смысле задачей считают проблему и определяют её как некую систему, связанную с другой системой – человеком. Из большой совокупности задач выделяют учебные задачи. Физической задачей называется небольшая проблема, которая решается на основе методов физики с использованием в процессе решения логических умозаключений, физического эксперимента и математических действий. Она предъявляется учащимся для того, чтобы её решение обеспечивало достижение целей обучения. Задаётся задача в основном словесно, но может сопровождаться рисунками, схемами, графиками. Она не всегда формулируется в физических терминах, так что часто возникает необходимость формулировать её с применением соответствующих физических понятий. Физические задачи являются неотъемлемым звеном учебного процесса, обучение учащихся их решению относится к практическим методам обучения.

Часто учителя физики полагают, что обучение учащихся решению задач – одна из основных задач всего учебного процесса по физике. Это, с одной стороны, верно, а с другой – ошибочно. Учащиеся должны обязательно решать задачи, так как в противном случае они не усвоят понятия и законы физики либо их знания будут формальными. В процессе решения задач знания учащихся конкретизируются, создаётся понимание сущности явлений, физические понятия и величины приобретают реальный смысл, у ученика появляется способность рассуждать, устанавливать причинно-следственные связи, выделять главное и отбрасывать несущественное. Решение задач позволяет сделать знания учащихся осознанными, избавить их от формализма. Но решение задач не должно превращаться в самоцель, поскольку основное значение этого вида учебной деятельности – углубление знаний учащихся, развитие их мышления, формирование умения анализировать задачную ситуацию и находить пути её решения, а также умения творчески подходить к возникающим проблемам.

Таким образом, решение задач имеет образовательное значение , так как оно способствует усвоению учащимися курса физики. Обучение учащихся решению задач позволяет формировать у них определённые виды деятельности, связанные с применением знаний в конкретных ситуациях. Эти виды деятельности могут формироваться как в алгоритмическом, так и на творческом уровне.

Обучение решению задач по физике имеет и воспитательное значение , так как позволяет влиять на воспитание личности ученика. Для развития личности ученика важна сама деятельность по решению задач, когда ученик должен проявлять волю, настойчивость, усидчивость, самостоятельность.

Очень большое значение имеет решение задач для развития учащихся , для развития их логического мышления, для формирования умения делать индуктивные и дедуктивные умозаключения, использовать аналогии и эвристические приёмы. В процессе решения задач могут быть созданы проблемные ситуации.

Решение задач имеет и политехническое значение . В задачах с политехническим содержанием приводятся сведения о технических объектах, выявляются основы их работы, взаимосвязь элементов этих технических объектов.

Классификация физических задач

Физические задачи классифицируются по содержанию, целевому назначению, глубине исследования, способам решения, способам задания условия задачи, по степени сложности и т.п.

По содержанию физические задачи делятся в зависимости от физического материала, в них рассматриваемого: на задачи по механике, задачи по молекулярной физике, задачи по электродинамике, задачи по квантовой физике. Однако есть задачи, в которых используются сведения из нескольких разделов курса физики, их называют комбинированными или комплексными.

По содержанию различаются также задачи абстрактные и конкретные. В абстрактных задачах данные величины приведены в общем виде без указания их конкретного значения. Например: «Тело массой m под действием силы F движется в течение времени t .Какой путь S пройдёт тело за это время, если его начальная скорость равна 0?» В задачах с конкретным содержанием приведены значения физических величин. Например: «Тело массой 0,5 кг под действием силы 20Н движется в течение 4с. Какой путь пройдёт за это время тело, если его начальная скорость равна 0».

В зависимости от содержания задачи могут быть политехническими, историческими, условия которых отражает элементы физики в культуре, искусстве, архитектуре, поэзии.

Существующие задачники по физике содержат задачи всех указанных выше типов, кроме того, имеются специальные задачники , посвященные , например, занимательным задачам.

По степени сложности , или по характеру умственной деятельности, физические задачи делятся на простые и сложные. Сложность задачи оценивается по числу операций, которые необходимо выполнить при её решении. Простые задачи требуют применения для своего решения изученных формул, знания единиц физических величин и сводятся к простейшим вычислениям в одно действие. Учителя физики часто называют такие задачи тренировочными и применяют их непосредственно на уроке для закрепления изученного материала. Деятельность учащихся в этом случае носит репродуктивный характер.

К сложным задачам относятся задачи, решение которых предполагает выполнение нескольких действий.

К сложным задачам относятся комбинированные задачи, решение которых требует применение знаний из разных разделов курса физики. В этои случае выполняется продуктивная деятельность и у учащихся формируется продуктивное мышление.

Особый класс задач составляют творческие задачи, при решении которых у учащихся формируются умения самого высокого уровня. В творческих задачах обычно формулируются требования, но отсутствуют прямые и косвенные указания на то какие законы следует применять для их решения. Творческие задачи могут быть исследовательскими, при решении которых получается ответ на вопрос «Почему?», и конструкторскими, решение которых даёт ответ на вопрос «Как сделать?». К этой же категории относятся задачи олимпиадные.

В зависимости от способа выражения условия выделяют текстовые, экспериментальные, графические задачи и задачи-рисунки.

По основному способу решения задач целесообразно выделить качественные (задачи-вопросы), вычислительные, графические и экспериментальные задачи. Качественные задачи предполагают, что при их решении не выполняются вычисления, анализ задачной ситуации осуществляется на качественном уровне. При решении вычислительных задач выполняются вычисления; при решении графических задач используют графики; при решении экспериментальных задач применяют физический эксперимент.

Экспериментальные задачи – задачи, в которых эксперимент служит средством определения некоторых исходных величин, необходимых для решения; даёт ответ на поставленный в ней вопрос или является средством проверки сделанных согласно условию расчётов. При решении экспериментальных задач исчезает формальный подход к обучению, развиваются внимание, творческое мышление, устраняются недостатки в знаниях, совершенствуются навыки в обращении с приборами, более тесно прослеживается связь с жизнью. Экспериментальные задачи можно ставить на основе показанных учащимися демонстраций, дополнять ими задания фронтальных лабораторных работ и физического практикума. Экспериментальные задачи делятся на три основные группы: 1-задачи, решение которых проверяется опытом; 2– задачи, исходные данные для решения которых получают в результате опыта; 3- задачи, в которых ответ на поставленный вопрос даёт опыт.

Технология решения физических задач

Под технологией решения задач понимают совокупность приёмов и операций, выполнение которых приводит к ответу на вопрос задачи, к нахождению связи между искомыми и заданными в её условии .

В психологии процесс мышления чаще всего определяется как аналитическо-синтетический. Логические приёмы , осуществляемые при решении задач, также в себя включают анализ и синтез , которые сопровождают друг друга. В то же время аналитический и синтетический приёмы рассматривают раздельно, хотя это деление является условным.

При использовании аналитического приёма решение задачи начинают с анализа вопроса задачи и записи формулы, в которую входит искомая величина. Затем для величин, содержащихся в этой формуле, записывают уравнение, устанавливающее их связь с величинами, заданными в условии.

При использовании синтетического приёма решение задачи начинают с выяснения связей величин, данных в условии задачи, с другими до тех пор, пока в уравнении в качестве неизвестной не войдёт искомая величина.

Рассмотрим приёмы решения качественных задач. При их решении с помощью дедукции и индукции строятся логические умозаключения. При этом анализ и синтез так тесно связаны друг с другом, что можно говорить об аналитико-синтетическом методе решения задач.

Решение простых качественных задач при хорошем знании физического материала не представляет для учащихся больших затруднений. Проиллюстрируем это на примере.

Задача . Как может человек быстро удвоить давление, производимое им на пол?

Анализируя условие задачи, вспоминают формулу давления P=F/S , где F –модуль силы давления, а S– площадь, на которую эта сила действует. Как же удвоить давление? Есть два пути: увеличить в два раза силу F или уменьшить также в два раза площадь S (при том же значении F). Применяя эти знания к задаче (рассматривается человек), ученик приходит к выводу: надо либо дать человеку в руки груз, масса которого равна массе человека, либо просить человека встать на одну ногу, сохраняя равновесие.

Задачу можно решить устно, а можно записать формулу давления и проанализировать её.

При решении физических задач могут быть использованы арифметический, алгебраический, графический, геометрический способы.

Рассмотрим арифметический способ . Этот способ предполагает решение задачи по вопросам, по действиям. Записывают формулу и сразу же вычисляют содержащуюся в ней неизвестную величину. Несмотря на то что учащиеся к моменту решения физических задач уже изучили основы алгебры, этот способ сохраняется на основном этапе изучения физики. Приведём пример.

Задача. Какой максимальной массы груз может выдержать в пресной воде плот, связанный из 25 сосновых брёвен? Объём каждого бревна в среднем 0,8 м3.

Проанализировав текст данной задачи, записывают кратко её условие. Затем анализируют условие задачи и делают необходимый чертёж, на котором изображают действующие на плот силы. Говорят, что грузоподъёмность плота равна разности этих сил.

Арифметический путь решения задачи:

  1. Каков объём всех брёвен плота?

V пл =0,8м 3 25=20 м 3 .

2. Чему равна масса плота?

m=500 кг/м 3 20 м 3 =10000 кг.

3. Какова сила тяжести, действующая на плот?

F т =9,8 Н/кг 10000 кг=98000 Н.

4. Какова Архимедова сила, действующая на плот?

F А =1000 кг/м 3 9,8 Н/кг 20 м 3 =196000 Н.

5.Каков вес груза, который может выдержать плот?

P=196000 Н-98000 Н=98000 Н.

6. Какова масса груза?

m гр =98000 Н/ 9,8 Н/кг=10000 кг.

Решение довольно длинное, включающее сравнительно большое количество вычислений.

Алгебраический путь решения выглядит проще.

После анализа заданной ситуации записывают:P=F T -F A . Зная, что F A =p в gV, а V=nV 1 , записывают:F A =p в gnV 1 ; F T =mg, m=p д V=p д nV 1 т.е.F T =p д nV 1 g.

Окончательно получают: P=p в gnV 1 -p д nV 1 g=gnV 1 (p в -p д )

Поскольку масса груза m гр =P/g, то m гр =nV 1 (p в -p д ), m гр =25 0,8 м 3 (1000 кг/м 3 -500 кг/м 3 )=10000 кг=10 т.

Алгебраический путь более экономный, однако он требует определённых знаний по математике.

При решении задач геометрическим способом используются известные учащимся соотношения из геометрии. Проиллюстрируем это примером.

Задача. В трёх вершинах квадрата со стороной 0,4 м находятся одинаковые положительные заряды по 5 10 -9 Кл каждый.

Найти напряженность поля в четвёртой вершине.

q 1 =q 2 =q 3 =5 10 -9 Кл

В четвёртой вершине квадрата накладываются три поля: Е 1 , Е 2 , Е 3 . Результирующее поле Е равно геометрической сумме этих полей.

Напряженность поля Е 1 и Е 2 равны.

Е 1 =Е 2 = ; Е 12 находим по теореме Пифагора:

Результирующее поле в точке А будет:

Рассмотрим графический способ решения задач. В этом случае объектом исследования является график. В одних задачах он задаётся условием и график надо проанализировать, как говорят, «прочитать график». В других задачах график должен построить сам учащийся по тем данным, которые приведены в условии задачи или которые он получает в результате решения задачи.

Рассмотрим задачу, решаемую графическим способом.

Задача. По графику опишите движение тела, определите время, проекцию перемещения и проекцию ускорения на отдельных участках движения тела.

При анализе условия, во-первых, устанавливают, что на графике приведена зависимость проекции скорости от времени. Начальная скорость V 0x =0 (при t=0). Вначале тело движется с ускорением, так как проекция его скорости возрастает от 0 до V 1x . Если график – прямая линия, то движение равноускоренное и проекция его ускорения , а проекция перемещения численно равна площади треугольника OAD. Проекция перемещения . Это и есть формула проекции перемещения для данного вида движения. В течение промежутка времени проекция скорости V 1x не менялась, т.е. тело двигалось равномерно. Проекция перемещения S 2x за это время численно равна площади прямоугольника ABCD, а проекция перемещения за время – площади трапеции OABC.

Технология обучения учащихся решению физических задач.

Технология обучения учащихся решению физических задач представляет собой систему приёмов, реализация которых приводит к формированию у учащихся умений решать задачи .

Решение любой задачи включает в себя несколько этапов. При обучении учащихся необходимо прежде всего сформировать у них представления об этих этапах и необходимости следовать им при решении задачи.

Первый этап решения задачи – чтение и уяснение условия.

Условие задачи читает либо сам ученик, либо учитель. Текст задачи читается без спешки, при необходимости повторяется, учащимся разъясняются незнакомые термины и понятия. Полезно проанализировать условие, определив, какое явление описано в задаче, что дано, что надо найти. На первых этапах обучения решению задач полезно просить учащихся пересказать условие задачи.

Второй этап решения задачи – краткая запись условия задачи. Условие записывается столбиком, при необходимости оставляют место для записи табличных данных, потребность в которых устанавливается при анализе задачной ситуации.

Третий этап решения задачи – перевод заданных значений физических величин в Международную систему единиц (СИ). К неукоснительному выполнению этого этапа следует приучать учащихся с начальных классов, что обусловлено в том числе и затруднениями, испытываемыми учащимися при выполнении этой работы. В дальнейшем допустимо использование внесистемных единиц, разрешенных к употреблению.

Четвёртый этап решения задачи – анализ описанной в ней задачной ситуации. Итогом выполнения этого этапа является модель задачной ситуации.

В ходе анализа устанавливают, какой физический объект описывается в задаче, какие происходят изменения состояния объекта, что является их причиной. Анализ задачной ситуации сопровождают рисунком, схемой, чертежом. В задачах по механике выбирают систему отсчета, анализируют взаимодействия, изображают силы.

Важным при анализе задачной ситуации является обсуждение всех допущений, которые делают при её решении (факторов, которыми можно пренебречь), например пренебрежение размерами тела (материальная точка), массой нити, связывающей движущиеся тела (одинаковость ускорений тел), теплообменом с окружающей средой (изолированная система) и т.п.

Пятый этап решения задачи – создание математической модели решения задачи (составление плана решения, запись уравнений, решение задачи в общем виде, т.е. получение выражения, связывающего искомую величину с данными).

Шестой этап решения задачи – вычисления. Перед выполнением вычислений целесообразно осуществить проверку полученного выражения по единицам величин. Такая проверка позволяет подставить в расчетную формулу лишь численные значения величин без соответствующих единиц. Если проверка не осуществляется, то учащиеся должны подставлять в формулу значения величин (численные значения с соответствующими единицами).

Седьмой этап решения задач – проверка ответа и его анализ. При анализа ответа устанавливают его реальность и его изменение при учете факторов, которыми пренебрегали при составлении физической модели задачной ситуации.

Задача . Рассчитайте длину маятника с периодом колебаний 2 с. Изготовьте его. Зависит ли период колебаний маятника от массы маятника и амплитуды колебаний?

Первый этап – устанавливают, что в задаче описан процесс колебаний маятника, задан период колебаний, необходимо найти длину маятника.

Второй этап – кратко записывают условие задачи.

Самые частые ошибки на ЕГЭ по физике: как их избежать и набрать максимум баллов

Физика — один из популярных предметов по выбору на ЕГЭ. Но даже хорошо подготовленные ученики нередко допускают досадные ошибки в своих работах. Как их избежать? Какие виды задач представлены в КИМах? Разбираемся с ответственным секретарем предметной комиссии ЕГЭ по физике города Москвы Ларисой Капустиной.

Структура и содержание контрольных измерительных материалов ЕГЭ по физике 2021 года не изменились по сравнению с 2020 годом, экзамен по-прежнему состоит из двух частей.

Первая часть содержит 24 вопроса, ответы на которые нужно записать в бланк ответов № 1. Максимальное количество первичных баллов — 34. Во второй части экзаменационных материалов будет, как и прежде, восемь задач, но только на две задачи — 25 и 26 — нужно дать краткий ответ, записав его в бланк ответов № 1. Остальные задачи второй части проверяются экспертами, их решения записываются в бланке ответов № 2.

Для успешной сдачи ЕГЭ по физике я рекомендую разобрать критерии оценивания и посмотреть, за что эксперты могут снять баллы при проверке заданий с развернутым ответом; ознакомиться с кодификатором, так как при решении задач можно использовать только формулы из кодификатора (исключение — законы Кирхгофа и теорема Гаусса), а также обращать внимание на формулировки заданий: требования могут быть разными.

Предлагаю рассмотреть основные ошибки и пути решения заданий первой части ЕГЭ по физике.

Задания по молекулярной физике

В заданиях 8–12 первой части контрольных измерительных материалов больше всего ошибок допускают при решении задач по теме «Насыщенный пар. Относительная влажность».

Рассмотрим задание 10. В сосуде под поршнем находится 2 г водяного пара под давлением 50 кПа и при температуре 100 °С. Не изменяя температуры, объем сосуда уменьшили в 4 раза. Найдите массу образовавшейся при этом воды.

Здесь нужно обратить внимание прежде всего на то, что температура пара равна 100 °С, а давление насыщенного пара при этой температуре равно 105 Па. В начальный момент времени газ находится под давлением 50 кПа, поэтому является ненасыщенным. При увеличении давления в два раза пар достигнет насыщения, а объем при постоянной температуре уменьшится в два раза. Значит, при объеме V/2 пар станет насыщенным и его давление не будет меняться при дальнейшем уменьшении объема.

Задания по электродинамике

Решая задания по электродинамике из первой части, учащиеся затрудняются ответить на вопрос, связанный с периодом изменения энергии электрического или магнитного поля в колебательном контуре. При ответе, как правило, не учитывается, что период изменения энергии электрического и магнитного поля в два раза меньше периода изменения силы тока или заряда на обкладках конденсатора колебательного контура.

При решении заданий по оптике (дифракция) участники экзамена путают такие понятия, как «максимальный порядок спектра» и «максимальное количество спектров». Максимальное количество спектров, которое можно увидеть, используя данную дифракционную решетку, можно найти, умножив значение максимального порядка спектра на два и прибавив к полученному произведению один.

399 баллов за четыре экзамена: как Рамиль из Казани стал рекордсменом ЕГЭ

В задании 24 проверяются знания выпускников по астрономии. Правильный ответ оценивается в два первичных балла. С 2020 года в этом задании предлагается пять утверждений, из которых нужно выбрать все правильные. Если в ответе указать хотя бы одну лишнюю цифру или не записать один элемент ответа, то снимается один балл из двух.

При проверке оценивается не столько знание огромного объема данных по астрономии, сколько умение анализировать представленный в табличном виде материал, связанный с характеристиками планет, спутников и звезд.

Задачи с развернутым ответом

Для получения максимального балла на ЕГЭ выпускнику необходимо выполнить задания с развернутым ответом. В экзаменационной работе их шесть:

  • задание 27 — качественная задача (3 балла, повышенный уровень сложности);
  • расчетные задачи 29–32 (3 балла, высокий уровень сложности);
  • задача 28 (2 балла, повышенный уровень сложности).

Всего за эти задания можно получить 17 первичных баллов.

В задании 27 нужно записать рассуждения, указать физические явления и законы, а главное — четко сформулировать полный ответ. Если участник экзамена будет рассуждать правильно, но даст неверный ответ, то получит максимум один балл.

Когда выпускник работает над заданием, он должен внимательно прочитать условие, выделить все встречающиеся в условии задачи термины и вспомнить их определения, ответить для себя на вопросы, об изменении каких физических величин идет речь, что нужно найти и в какой форме необходимо дать ответ (словами — например, «увеличивается», «уменьшается», в виде числового ответа, в виде графика и т. д.).

После того как выпускник ознакомится с условием, ему нужно будет проанализировать процессы, о которых идет речь. Для этого можно:

1. выделить из текста описание физических процессов, условия и последовательность их протекания;

2. установить взаимосвязь между физическими величинами, изменение которых надо рассмотреть при решении задачи, записать законы и формулы, которые отражают эту зависимость;

3. записать свои рассуждения в виде логической цепочки;

4. сформулировать ответ.

Рассмотрим пример решения задания 27

Задача

В цилиндре под поршнем при комнатной температуре t₀ долгое время находится только вода и ее пар. Масса жидкости в два раза больше массы пара. Медленно перемещая поршень, объем V под поршнем изотермически увеличивают от V₀ до 6V₀. Постройте график зависимости давления p в цилиндре от объема V на отрезке от V₀ до 6V₀. Укажите, какими закономерностями вы при этом пользовались.

Анализ условия задачи

Обратите внимание: в условии требуется построить график. Значит, именно он и будет правильным ответом к данной задаче. В условии определено, во сколько раз меняется объем, значит, для ответа на вопрос нужно точно рассчитать, во сколько раз изменится давление, а не просто констатировать факт его уменьшения или увеличения. Эти расчеты нужно учесть при построении графика. Если рассуждения в ответе будут абсолютно верными, но не будет графика, то эксперты оценят решение задачи в один балл.

Решение

В начальном состоянии над водой долгое время находится насыщенный водяной пар. За длительное время в системе установилось термодинамическое равновесие, поэтому можно сделать вывод, что пар — насыщенный.

Пока в цилиндре остается вода, при медленном изотермическом расширении пар остается насыщенным. Поэтому график p(V) будет графиком константы, то есть отрезком горизонтальной прямой. Количество воды в цилиндре при этом убывает. При комнатной температуре концентрация молекул воды в насыщенном паре ничтожна по сравнению с концентрацией молекул воды в жидком агрегатном состоянии. Масса воды в два раза больше массы пара. Поэтому, во-первых, в начальном состоянии насыщенный пар занимает объем практически равный V₀. Во-вторых, чтобы вся вода испарилась, нужно объем под поршнем увеличить еще на 2V₀. Таким образом, горизонтальный отрезок описывает зависимость p(V) на участке от V₀ до 3V₀.

При V > 3V₀ под поршнем уже нет жидкости — все молекулы воды образуют ненасыщенный водяной пар, который можно на изотерме описывать законом Бойля — Мариотта: pV = const, т. е. p ⁓ 1/V. Графиком этой зависимости является гипербола. Таким образом, на участке от 3V₀ до 6V₀зависимость p(V) изображается фрагментом гиперболы. Раз объем увеличился в два раза, значит, давление уменьшилось в два раза.

Ответ

На участке от V₀ до 3V₀ давление под поршнем постоянно (давление насыщенного пара на изотерме). На участке от 3V₀ до 6V₀ давление под поршнем подчиняется закону Бойля — Мариотта. Таким образом, на участке от V₀ до 3V₀ график представляет собой горизонтальный отрезок прямой, а на участке от 3V₀ до 6V₀ — фрагмент гиперболы.

Расчетные задачи высокого уровня сложности (29, 30, 31, 32)

Чтобы получить максимально возможные 3 балла в расчетных задачах 29–32, выпускнику нужно:

  • записать «Дано», представить рисунок, если это необходимо для понимания ситуации;
  • записать нужные для решения формулы и физические законы;
  • описать все буквенные обозначения физических величин, которые используются в решении. Исключение — константы и физические величины, которые есть в условии задачи;
  • сделать рисунок с указанием сил, которые действуют на тело, если это прописано в условии;
  • провести необходимые преобразования и расчеты (при этом допустимо решать по частям, тогда при расчетах в конечную формулу необходимо подставить числа);
  • представить правильный ответ с указанием единиц измерения искомой величины.

Но помните, что по критериям оценивания расчетных задач балл может быть снижен на один, если:

  • отсутствуют рисунок или схема, которые нужно было сделать по условию;
  • есть одна или несколько ошибок на рисунке;
  • отсутствуют описания впервые вводимых физических величин;
  • есть ошибки в математических преобразованиях, расчетах, или математические преобразования вообще отсутствуют в ходе решения задачи;
  • нет подстановки цифр в конечную формулу или в промежуточные формулы в ситуации, когда расчет осуществляется по действиям.

Типичные ошибки

Рассмотрим типичные ошибки выпускников при решении задач ЕГЭ по физике и расскажем, как их не допустить в своей работе.

1. Использование формул, которых нет в кодификаторе

Снижение на два балла возможно, если в решении применяются формулы, которых нет в кодификаторе. Чаще всего подобные ошибки участники экзамена допускают в задачах по термодинамике и на движение тела, брошенного под углом к горизонту или горизонтально. При решении задач с развернутым ответом по баллистике нельзя в готовом виде использовать формулы для максимальной дальности полета, времени всего движения по параболе и максимальной высоты подъема. Их надо выводить.

Готовимся к ЕГЭ по информатике: что повторить и доучить за месяц до экзамена

В задачах по термодинамике подобные ошибки выпускники допускают, когда для решения нужно найти количество теплоты, которое необходимо сообщить газу в изобарном процессе. Участники экзамена знают формулу для количества теплоты и сразу ее записывают. Однако ее нет в кодификаторе, ее нужно вывести, поэтому в решении необходимо записать первый закон термодинамики, уравнение для изменения внутренней энергии и формулу для работы газа при изобарном процессе.

2. Решение задач только числами

Некоторые учащиеся решают задачи, сразу подставляя числа, не записав формулу в общем виде. В этом случае будет поставлено 0 баллов — за отсутствие формул, необходимых для решения задачи.

3. Не подставлены числа в формулу при расчете

Для проведения расчетов в выведенную при решении задачи формулу, в которой искомая физическая величина выражена через известные в задаче физические величины, надо обязательно подставить числа. Их также надо подставлять и при расчете задачи по частям.

Рекомендации по подготовке к экзамену

При подготовке к ЕГЭ по физике я рекомендую выпускникам использовать:

1. открытый банк заданий Федерального института педагогических измерений;

2. записи вебинаров по разбору заданий единого государственного экзамена на сайте МЦКО;

3. самодиагностики в МЭШ. Для школьников доступны задания нескольких уровней сложности: стартового, базового, профильного и олимпиадного.

4. еженедельный проект для учащихся 9-х и 11-х классов «Субботы московского выпускника» Московского центра качества образования и Московского образовательного телеканала, в котором ведущие эксперты МЦКО в прямом эфире разбирают решения заданий ЕГЭ и ОГЭ, а также проводят видеоконсультации по различным темам для подготовки к государственной итоговой аттестации;

5. видеоконсультации по подготовке к ЕГЭ на Московском образовательном телеканале.

Фото на обложке: Unsplash / Taton Moïse

Инструкция: как сдать часть 2 ЕГЭ по физике

Задание № 25

Что требуется

Решить задачу по механике или молекулярной физике.

Особенности

В этом задании проверяется умение решать стандартные, типовые задачи. Речь идет о применении одного или двух законов и соответствующих им формул. Такие задачи часто встречаются в наиболее распространенных задачниках, в них практически нет подводных камней, и для решения не требуется нестандартных подходов.

Советы

Чтобы успешно справиться с этим заданием, нужно брать стандартные школьные задачники и решать задачи по соответствующим разделам.

Задание № 26

Что требуется

Решить задачу по молекулярной физике или термодинамике.

Особенности

На ЕГЭ представлены пять разделов физики: механика, молекулярная физика и термодинамика, электродинамика, основы специальной теории относительности и квантовая физика. Основы специальной теории относительности являются достаточно специфическим разделом. Его освоению в школе уделяется совсем немного времени, но на ЕГЭ по физике он чаще всего встречается лишь в одном задании (№ 18). Из года в год статистика результатов экзамена показывает, что чем дальше по темам, тем хуже решаемость задач. Так, задачи по механике успешно решает значительный процент выпускников, по молекулярной физике — чуть меньше, по электродинамике — еще меньше, а по квантовой физике процент самый низкий. Разница в количестве абитуриентов, верно решивших задачи в рамках того или иного раздела, не столь велика (около 10˜—15%), но тенденция сохраняется из года в год.

Распространенная ошибка, которая часто возникает в задаче № 26, связана с применением первого закона термодинамики к различным изопроцессам. Выпускники неправильно пишут знаки необходимых величин. Этот закон включает в себя теплоту, подводимую или отводимую из системы, изменение внутренней энергии и работу. В зависимости от того, расширяется газ или сжимается, нагревается или охлаждается, подводят теплоту в систему или, наоборот, отводят, у всех названных выше величин меняются знаки, и они входят в уравнение либо с плюсом, либо с минусом. Участники экзамена регулярно ошибаются при расстановке знаков. Здесь нужно вспомнить, что чему должно соответствовать, и подумать, с какими знаками величины подставить в уравнение, чтобы получить корректное решение и правильный ответ.

Успешнее всего ребята справляются с задачами на уравнение Менделеева — Клайперона и на формулу для внутренней энергии идеального газа. Если на ЕГЭ попадаются эти темы, большинство абитуриентов верно решает задачу.

Советы

Статистика успешного выполнения задания № 26 может меняться в три-четыре раза в зависимости от темы. Поэтому советую внимательно повторить то, как правильно пользоваться первым законом термодинамики, а также темы, которые находятся в разделе молекулярной физики и термодинамики и вызывают у вас наибольшие трудности.

Задание № 27

Что требуется

Решить задачу по электродинамике или квантовой физике.

Особенности

В спецификации ФИПИ под этим номером идет задача по электродинамике или квантовой физике. При этом в методических рекомендациях по результатам ЕГЭ-2017 указано: «В следующем году последней расчетной задачей с кратким ответом на позиции 27 будут преимущественно задания по квантовой физике (на уравнение Эйнштейна для фотоэффекта или на формулу для энергии или импульса фотонов)». Эта информация сильно сужает список тем, которые стоит повторять при подготовке к этому заданию.

Советы

Обратите внимание на темы, о которых идет речь выше, и прорешайте соответствующие типичные задачи.

Задание № 28

Что требуется

Решить качественную задачу из любого раздела, который есть в кодификаторе.

Особенности

Качественная задача не имеет числового ответа. Ответ здесь может звучать как «больше», «меньше», «увеличится», «уменьшится», «вырастет», «упадет». В этих задачах, как правило, важен не столько результат, сколько сам ход решения. Например, в условии может быть схема электрической цепи, а затем в цепи происходит какое-то изменение (переключили ключ или заменили какой-нибудь элемент). В качестве решения надо указать, что изменится в системе или что произойдет с показаниями тех или иных измерительных приборов, которые содержатся в цепи.

Задание проверяет знание законов физики, умение их применить, а также логику переходов в построении решения. Насколько выпускник понимает то или иное явление? Нет ли логических ошибок в его рассуждениях? Могу сказать, что, по статистике, эта задача имеет один из самых низких процентов решаемости за всю историю ЕГЭ по физике.

Советы

Если на экзамене вы претендуете на максимальный балл, вам стоит обратить особое внимание на это задание. Существуют отдельные сборники по качественным задачам (например, «Качественные задачи по физике в средней школе», М.Е. Тульчинский). Хочу отметить, в зависимости от года издания, список рассматриваемых в этих сборниках тем может оказаться шире, чем требуется на ЕГЭ. Например, в сборниках, изданных в советское время, часто встречаются задачи на тепловое расширение, а в ЕГЭ такой темы нет. Поэтому подберите соответствующие темы по кодификатору ЕГЭ и прорешайте задачи по ним из какого-нибудь сборника качественных задач.

В методических рекомендациях, на которые я уже ссылался выше, этому заданию уделяется особое внимание, методика его решения обсуждается на нескольких страницах (стр. 20—22). Там рассматривается несколько типичных ошибок участников ЕГЭ по физике 2018 года и подходы к решению такого рода заданий. Выпускникам будет полезно ознакомиться с этим документом. Его можно найти на сайте ФИПИ.

Задание № 29

Что требуется

Решить задачу по механике.

Особенности

Задачи № 25—28 относились к повышенному уровню сложности, а последние четыре, начиная с № 29, уже относятся к высокому. Здесь от участников экзамена требуется применить законы физики в необычных условиях, которые редко встречаются в типовых задачниках.

Есть еще и такой нюанс. В прошлом году в кодификатор ЕГЭ по физике были внесены изменения, расширился список рассматриваемых тем. Обратите внимание, что в раздел «Механика» добавилась вторая космическая скорость, которой раньше там не было. Теперь могут появиться задачи и по этой теме.

Советы

В первую очередь обратите внимание на такие разделы механики, как «Статика» и «Колебания и волны». Эти темы достаточно часто встречаются в этом задании и вызывают наибольшие затруднения у выпускников.

Задание № 30

Что требуется

Решить задачу по молекулярной физике или термодинамике.

Особенности

В спецификации ЕГЭ по физике есть противоречие. В одной части этого документа говорится, что под этим номером идет задача по молекулярной физике или термодинамике, а в другой части, где описываются уровни сложности заданий, указано, что успешное выполнение этого задания требует знаний из нескольких разделов физики. По своему опыту могу сказать, что правильным стоит считать второй вариант. Кстати, это замечание относится ко всем четырем последним заданиям (№ 29—32).

Если на экзамене вам досталась задача по молекулярной физике, то чаще всего для решения требуются знания из области механики. Например, здесь могут рассматриваться изопроцессы, происходящие с идеальным газом, и создаваемое газом давление приводит к движению поршня, которое тоже надо описать, используя соотношения, известные из механики.

Советы

Чаще всего эта задача посвящена изопроцессам, происходящим в газах, и применению к этим процессам первого начала термодинамики. Также под № 30 встречаются задачи на уравнение теплового баланса, которые обычно не вызывают серьезных затруднений.

Задание № 31

Что требуется

Решить задачу по электродинамике.

Особенности

Это задача по электродинамике, но здесь надо применить знания из разных разделов. Например, часто в условии возникающие электродинамические силы приводят к механическому движению. Таким образом всплывают элементы механики, в частности, в решении нередко приходится использовать закон сохранения энергии.

Советы

Обратите внимание на следующие темы: электромагнитная индукция, электромагнитные колебания и волны, элементы физической оптики (дифракция и интерференция света). Эти разделы достаточно сложные, и по ним необходимо отдельно готовиться.

Наименьшие же трудности у ребят вызывают задачи на геометрическую оптику и применение закона Ома.

Задание № 32

Что требуется

Решить задачу по электродинамике или квантовой физике.

Особенности

Чаще всего под № 32 на ЕГЭ дают задачу по электродинамике. Но попадаются и задачи из квантовой физики, в частности на уравнение Эйнштейна для фотоэффекта.

Советы

Повторите следующие темы: фотоэффект, геометрическая оптика, электромагнитные колебания.

Общий обзор гаек и особенности их применения

Гайка — крепёжное изделие в виде детали с резьбовым отверстием, образующее соединение при помощи винта, болта или шпильки.

Наиболее традиционная и широко применяемая гайка – шестигранная DIN 934. Ее удобно заворачивать и от руки, и простым рожковым ключом. Эти гайки могут разниться по конструкции, в первую очередь – по высоте. Основная гайка (Рис. 1) имеет высоту приблизительно равную 0,8 d (d – диаметр резьбы).

Шестигранные гайки

Низкие гайки

Имеют высоту 0,5–0,6 d. В нашем ассортименте их две – DIN 439 и DIN 936 , но размерные ряды совпадают не полностью (Рис. 2). Кроме того одна из гаек может выпускаться в исполнении без фаски.

Высокие гайки

Имеют несколько стандартизованных высот:

Высота равна 1,5 диаметра – высокая, DIN 6330;


Высота равна 3 диаметрам – удлиненная, DIN 6334.

Гайки для высоконагруженных резьбовых соединений

Несколько особняком стоит гайка DIN 6915, входящая в комплект для высоконагруженных предварительно напряженных резьбовых соединений стальных конструкций. Она обладает увеличенным размером под ключ по сравнению с основной гайкой (Рис. 3).

Корончатые и прорезные гайки

Корончатые и прорезные гайки DIN 935 получили свое название от формы. Их верхняя часть имеет характерные прорези. До диаметра резьбы М10 зона прорезей имеет ту же толщину, что и вся гайка, которая называется прорезной. Начиная с диаметра М12, зона пропилов утоньшается и называется корончатой (Рис. 4). По высоте гайки выпускаются обычными и низкими. Кроме того, они могут иметь обычные и мелкие резьбы.

Корончатые гайки часто используются как гаечный замок со шплинтом DIN 94 (Рис. 5).

Гайки с буртом или фланцем

Весьма распространены в промышленности гайки с буртом или фланцем, которые увеличивают одну из опорных поверхностей гайки. Тем самым увеличивается площадь контакта соединяемых деталей, равномернее распределяется нагрузка на них.

Гайка с фланцем DIN 6923 – гайка, одна из опорных поверхностей которой увеличена за счет конического элемента (Рис. 6). Фланец может быть гладким или рифленым.

Гайка с буртом DIN 6931 – гайка, одна из опорных поверхностей которой увеличена за счет цилиндрического элемента (Рис. 7).

Гайка с буртом в основном используется в станочном оборудовании, а с фланцем – в машиностроении.

Для более надежного контакта соединяемых деталей на увеличенную опорную плоскость гайки наносится дополнительное рифление. Такие гайки бывают нескольких типов, но в нашем ассортименте присутствуют только три (Рис. 8):


рифленая ребристая зубчатая

Колпачковые гайки

Гайки с глухим отверстием – колпачковые – бывают высокие и низкие (иногда называются «глухими»).

Приварные гайки

Гайка приварная DIN 929 (Рис. 9) имеет характерные выступы по трем ребрам. Именно они обеспечивают контактную стыковую сварку гайки и основания.

Самостопорящиеся гайки

Среди шестигранных существует семейство самостопорящихся гаек. Эти гайки имеют в конструкции элементы, препятствующие откручиванию в процессе эксплуатации, например, при вибрации. Стопорящий элемент представляет собой кольцевой вкладыш из нейлона, который располагается в специальной канавке имеющейся на опорной поверхности гайки (Рис. 10).

При навинчивании гайки под давлением резьбы вкладыш деформируется и препятствует свинчиванию гайки. Гайки с неметаллической вставкой бывают высокие DIN 982 и низкие DIN 985 (Рис. 11).

На том же принципе основана гайка с фланцем DIN 6926 (Рис. 12).

В то же время самостопорящаяся гайка с фланцем может быть выполнена и целиком из металла. Эффект стопорения обеспечивается деформацией резьбового отверстия гайки: оно имеет овальную форму DIN 6927 (Рис. 13).

Цельнометаллическая самостопорщаяся гайка выпускается также на базе основного типа DIN 6925 (Рис. 14).

Самостопорящиеся гайки выполняются также на базе корончатых, колпачковых и других гаек.

Неординарная стопорная гайка DIN 7967 вырубается из тонкой жести и используется чаще всего для законтривания (Рис. 15).

Квадратные гайки

Квадратные гайки представлены в ассортименте ЦКИ высокой, низкой и приварной конструкциями.

Круглые гайки

Круглые гайки представлены в ассортименте ЦКИ рифленой, шлицевой и гайкой с прямым шлицем на торце. Особенностью рифленой гайки является нанесение накатки по внешней поверхности цилиндрической части, облегчающее закручивание от руки.

Гайки-барашки

Близкие «родственницы» винтов-барашков – гайки-барашки DIN 315. Они также представлены двумя модификациями, отличающимися формой крылышек. Более остроконечные относятся к т.н. «американской» форме.

Мебельные гайки

В ассортименте ЦКИ имеется четыре очень непохожих друг на друга гайки, применяемых при производстве мебели.

Гайка забивная устанавливается цилиндрической частью в предварительно подготовленное отверстие и забивается так, чтобы острые шипы по периметру «впились» в деревянную основу и препятствовали прокручиванию гайки в основании.


Гайка ввертная (она же «муфта мебельная») ввертывается своей внешней крупной резьбой в предварительно подготовленное (в соответствии со специальной таблицей DIN) отверстие.


Затем ее внутреннее резьбовое отверстие работает как в обычной гайке (Рис. 15).

Гайка декоративная (гайка Эриксона), как правило, устанавливается в сквозном отверстии совместно с ответным винтом.

Гайка потайная (иногда называют «бочонок»). Устанавливается в цилиндрическое отверстие в деревянной основе таким образом, чтобы резьбовое отверстие было совместимо с соответствующим винтом.

Гайка кузовная – скорее уже не деталь, а сборка. Она состоит из двух деталей: вкладыша и обоймы. Вкладыш – обычная квадратная гайка. Обойма изогнута особым образом из пружинной стали. Гайка используется при сборке кузовов автомобилей, организуя отверстия с резьбой в тонкой обшивке, направляющих электрических систем.


Гайка отрывная (иногда говорят срывная) антивандальная. Особый вид гайки, демонтаж который невозможен. Антивандальная гайка – это крепёжная деталь с нарезанной внутренней резьбой. Состоит из двух сочленённых частей: шестигранной, которая нужна для того, чтобы затянуть гайку целиком, и гладкой нижней, которая и остаётся после затяжки на месте монтажа. Подробнее посмотреть об особенностях работы можно в кратком обзорном ролике.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: