Что такое турбонадув и зачем он нужен

Что такое турбонаддув

Такая вот небольшая с виду «улитка» — один из самых действенных способов увеличить мощность двигателя.

Несомненно, каждый из нас хоть раз в жизни замечал на обычном с виду автомобиле шильдик «turbo». Производители, как нарочно, делают эти шильдики небольшого размера и размещают в неприметных местах так, что непосвящённый прохожий не заметит и пройдёт мимо. А понимающий человек непременно остановится и заинтересуется автомобилем. Ниже приводится рассказ о причинах такого поведения.

Автомобильные конструкторы (с момента появления на свете этой профессии) постоянно озабочены проблемой повышения мощности моторов. Законы физики гласят, что мощность двигателя напрямую зависит от количества сжигаемого топлива за один рабочий цикл. Чем больше топлива мы сжигаем, тем больше мощность. И, скажем, захотелось нам увеличить «поголовье лошадей» под капотом — как это сделать? нас и поджидают проблемы.

Дело в том, что для горения топлива необходим кислород. Так что в цилиндрах сгорает не топливо, а топливно-воздушная смесь. Мешать топливо с воздухом нужно не на глазок, а в определённом соотношении. К примеру, для бензиновых двигателей на одну часть топлива полагается частей воздуха — в зависимости от режима работы, состава горючего и прочих факторов.

Как мы видим, воздуха требуется весьма много. Если мы увеличим подачу топлива (это не проблема), нам также придётся значительно увеличить и подачу воздуха. Обычные двигатели засасывают его самостоятельно разницы давлений в цилиндре и в атмосфере. Зависимость получается прямая — чем больше объём цилиндра, тем больше кислорода в него попадёт на каждом цикле. Так и поступали американцы, выпуская огромные двигатели с умопомрачительным расходом горючего. А есть ли способ загнать в тот же объём больше воздуха?

Есть, и впервые придумал его господин Готтлиб Вильгельм Даймлер (Gottlieb Wilhelm Daimler). Знакомая фамилия? Ещё бы, именно она используется в названии DaimlerChrysler. Так вот, этот немец весьма неплохо соображал в моторах и ещё в 1885 году придумал, как загнать в них больше воздуха. Он догадался закачивать воздух в цилиндры с помощью нагнетателя, представлявшего собой вентилятор (компрессор), который получал вращение непосредственно от вала двигателя и загонял в цилиндры сжатый воздух.

Швейцарский инженер-изобретатель Альфред Бюхи (Alfred J. Büchi) пошёл ещё дальше. Он заведовал разработкой дизельных двигателей в компании Sulzer Brothers, и ему категорически не нравилось, что моторы были большими и тяжёлыми, а мощности развивали мало. Отнимать энергию у «движка», чтобы вращать приводной компрессор, ему также не хотелось. Поэтому в 1905 году господин Бюхи запатентовал первое в мире устройство нагнетания, которое использовало в качестве движителя энергию выхлопных газов. Проще говоря, он придумал турбонаддув.

Идея умного швейцарца проста, как всё гениальное. Как ветра вращают крылья мельницы, также и отработавшие газы крутят колесо с лопатками. Разница только в том, что колесо это очень маленькое, а лопаток очень много. Колесо с лопатками называется ротором турбины и посажено на один вал с колесом компрессора. Так что условно турбонагнетатель можно разделить на две части — ротор и компрессор. Ротор получает вращение от выхлопных газов, а соединённый с ним компрессор, работая в качестве «вентилятора», нагнетает дополнительный воздух в цилиндры. Вся эта мудрёная конструкция и называется турбокомпрессор (от латинских слов turbo — вихрь и compressio — сжатие) или турбонагнетатель.

В турбомоторе воздух, который попадает в цилиндры, часто приходится дополнительно охлаждать — тогда его давление можно будет сделать выше, загнав в цилиндр больше кислорода. Ведь сжать холодный воздух (уже в цилиндре ДВС) легче, чем горячий.

Воздух, проходящий через турбину, нагревается от сжатия, а также от деталей турбонаддува, разогретого выхлопными газами. Подаваемый в двигатель воздух охлаждают при помощи так называемого интеркулера (промежуточный охладитель). Это радиатор, установленный на пути воздуха от компрессора к цилиндрам мотора. Проходя через него, он отдаёт своё тепло атмосфере. А холодный воздух более плотный — значит, его можно загнать в цилиндр ещё больше.

Чем больше выхлопных газов попадает в турбину, тем быстрее она вращается и тем больше дополнительного воздуха поступает в цилиндры, тем выше мощность. Эффективность этого решения по сравнению, например, с приводным нагнетателем в том, что на «самообслуживание» наддува тратится совсем немного энергии двигателя — всего 1,5%. Дело в том, что ротор турбины получает энергию от выхлопных газов не за счёт их замедления, а за счёт их охлаждения — после турбины выхлопные газы идут быстро, но более холодные. Кроме того, затрачиваемая на сжатие воздуха даровая энергия повышает КПД двигателя. Да и возможность снять с меньшего рабочего объёма большую мощность означает меньшие потери на трение, меньший вес двигателя (и машины в целом). Всё это делает автомобили с турбонаддувом более экономичными в сравнении с их атмосферными собратьями равной мощности. Казалось бы, вот оно, счастье. Ан нет, не всё так просто. Проблемы только начались.

Читайте также:
Задний фонарь Рено Логан

, скорость вращения турбины может достигать 200 тысяч оборотов в минуту, , температура раскалённых газов достигает, только попробуйте представить, 1000°C! Что всё это означает? То, что сделать турбонаддув, который сможет выдержать такие неслабые нагрузки длительное время, весьма дорого и непросто.

По этим причинам турбонаддув получил широкое распространение только во время Второй мировой войны, да и то только в авиации. В годах американская компания Caterpillar сумела приспособить его к своим тракторам, а умельцы из Cummins сконструировали первые турбодизели для своих грузовиков. На серийных легковых машинах турбомоторы появились и того позже. Случилось это в 1962 году, когда почти одновременно увидели свет Oldsmobile Jetfire и Chevrolet Corvair Monza.

Но сложность и дороговизна конструкции — не единственные недостатки. Дело в том, что эффективность работы турбины сильно зависит от оборотов двигателя. На малых оборотах выхлопных газов немного, ротор раскрутился слабо, и компрессор почти не задувает в цилиндры дополнительный воздух. Поэтому бывает, что до трёх тысяч оборотов в минуту мотор совсем не тянет, и только потом, тысяч после четырёх-пяти, «выстреливает». Эта ложка дёгтя называется турбоямой. Причём чем больше турбина, тем она дольше будет раскручиваться. Поэтому моторы с очень высокой удельной мощностью и турбинами высокого давления, как правило, страдают турбоямой в первую очередь. А вот у турбин, создающих низкое давление, никаких провалов тяги почти нет, но и мощность они поднимают не очень сильно.

Почти избавиться от турбоямы помогает схема с последовательным наддувом, когда на малых оборотах двигателя работает небольшой малоинерционный турбокомпрессор, увеличивая тягу на «низах», а второй, побольше, включается на высоких оборотах с ростом давления на выпуске. В прошлом веке последовательный наддув использовался на суперкаре Porsche 959, а сегодня по такой схеме устроены, например, турбодизели фирм BMW и Land Rover. В бензиновых двигателях Volkswagen роль маленького «заводилы» играет приводной нагнетатель.

На рядных двигателях зачастую используется одиночный турбокомпрессор (пара «улиток») с двойным рабочим аппаратом. Каждая из «улиток» наполняется выхлопными газами от разных групп цилиндров. Но при этом обе подают газы на одну турбину, эффективно раскручивая её и на малых, и на больших оборотах

Но чаще по-прежнему встречается пара одинаковых турбокомпрессоров, параллельно обслуживающих отдельные группы цилиндров. Типичная схема для турбомоторов, где у каждого блока свой нагнетатель. Хотя двигатель V8 фирмы M GmbH, дебютировавший на автомобилях BMW X5 M и X6 M, оснащён перекрёстным выпускным коллектором, который позволяет компрессору получать выхлопные газы из цилиндров разных блоков, работающих в противофазе.

Заставить турбокомпрессор работать эффективнее во всём диапазоне оборотов, можно ещё изменяя геометрию рабочей части. В зависимости от оборотов внутри «улитки» поворачиваются специальные лопатки и варьируется форма сопла. В результате получается «супертурбина», хорошо работающая во всём диапазоне оборотов. Идеи эти витали в воздухе не один десяток лет, но реализовать их удалось относительно недавно. Причём сначала турбины с изменяемой геометрией появились на дизельных двигателях, благо, температура газов там значительно меньше. А из бензиновых автомобилей первый примерил такую турбину Porsche 911 Turbo.

Конструкцию турбомоторов довели до ума уже давно, а в последнее время их популярность резко возросла. Причём турбокомпрессоры оказалось перспективным не только в смысле форсирования моторов, но и с точки зрения повышения экономичности и чистоты выхлопа. Особенно актуально это для дизельных двигателей. Редкий дизель сегодня не несёт приставки «турбо». Ну а установка турбины на бензиновые моторы позволяет превратить обычный с виду автомобиль в настоящую «зажигалку». Ту самую, с маленьким, едва заметным шильдиком «turbo».

Как работает турбонаддув?

Характеристики двигателя внутреннего сгорания (ДВС) можно описать через его выходной крутящий момент. Крутящий момент двигателя на низких оборотах оказывает значительное влияние на управляемость автомобиля, а крутящий момент двигателя на высоких оборотах определяет максимальную скорость автомобиля и расположение передаточных чисел коробки передач.

Крутящий момент двигателя можно увеличить несколькими способами:

  • повысить эффективность двигателя
  • увеличить объем двигателя
  • увеличить плотность всасываемого воздуха

Турбонаддув — верный метод увеличения плотности всасываемого воздуха. Это требует дополнительной работы на стороне впуска воздуха, помимо насосной работы атмосферного (безнаддувного) двигателя, чтобы нагнетать дополнительную массу воздуха в цилиндры. Эта дополнительная работа осуществляется турбонагнетателем, где турбина использует энергию выхлопных газов для вращения компрессора (крыльчатки).

Исторически нагнетатели впервые устанавливались на дизельные двигатели с воспламенением от сжатия, в основном по следующим причинам:

  • удельная мощность дизельного двигателя без наддува оставляет желать лучшего
  • выходная мощность дизельного двигателя ограничена дымовыделением, а добавление большего количества воздуха в цилиндр может уменьшить количество дыма
  • (по сравнению с бензиновым двигателем со свечами зажигания) детонация в дизельном двигателе невозможна, поскольку топливо впрыскивается в конце цикла сжатия
  • (по сравнению с бензиновым двигателем со свечами зажигания) дизельные двигатели дороже в производстве, поэтому стоимость турбокомпрессора меньше влияет на общую стоимость двигателя.

На двигателе внутреннего сгорания с искровым зажиганием (бензиновом) основной причиной установки турбонагнетателя является увеличение выходного крутящего момента / мощности за счет ограниченной (объемной) мощности двигателя. Основным ограничением бензинового двигателя с турбонаддувом с точки зрения того, насколько может повыситься давление наддува, является детонация в двигателе. Дополнительный воздух для наддува внутри цилиндров вызывает значительное повышение температуры топливовоздушной смеси в конце сгорания, что может привести к детонации в двигателе. Для предотвращения детонации двигатели с турбонаддувом обычно имеют более низкую степень сжатия, чем двигатели без наддува (атмосферные).

Читайте также:
Замена тормозной жидкости - тормозные шланги и трубки - руководство по ремонту ваз 2110, 2112, 2111 (лада 110)

Турбонаддув можно охарактеризовать как особый метод наддува, при котором энергия горячих выхлопных газов используется для привода компрессора всасываемого воздуха. Преимущество заключается в том, что энергия выхлопных газов не тратится впустую, а используется для работы компрессора.

Когда турбина помещается в выпускной коллектор, давление выхлопных газов увеличивается перед турбиной. Это заставляет двигатель потреблять больше энергии для удаления сгоревших газов из цилиндров во время такта выпуска. Турбина преобразует поток и тепловую энергию выхлопных газов в энергию сжатия. Следовательно, рост давления всасываемого воздуха больше, чем рост давления выхлопных газов, а это означает, что суммарный КПД двигателя увеличивается.

Автомобильные турбокомпрессоры состоят из четырех основных частей:

  • корпус компрессора
  • основной (центральный) корпус
  • корпус турбины
  • привод перепускной заслонки

Корпус компрессора (обычно изготовленный из алюминия) содержит компрессор с осевым входом и радиальным выходом (также известный как рабочее колесо). Корпус турбины содержит турбину с радиальным притоком и осевым выпуском, соединенную с компрессором через вал.

Скорость турбокомпрессорного агрегата может легко достигать 120 000 об / мин или даже 300 000 об / мин. Чтобы выдерживать такие высокие скорости, вал вращается в подшипниках скольжения с гидродинамической масляной пленкой с низким коэффициентом трения, которые размещены в основном (центральном) корпусе.

Подшипники скольжения бывают двух типов: радиальные и осевые. Обычно это два радиальных подшипника (втулка) и один упорный подшипник (упорный). Подшипники имеют смазочные каналы, которые позволяют маслу проникать внутрь подшипников и образовывать гидродинамическую масляную пленку между подшипником и валом. Такие подшипники также называются полностью плавающими. Цепь смазки турбонагнетателя подключена к основной системе смазки двигателя внутреннего сгорания.

Температура масла может широко варьироваться от минимальной (например, -30 ° C) до номинальной рабочей температуры двигателя (около 90 ° C). Для обеспечения потока масла для охлаждения в любых температурных условиях необходимо обеспечить зазор между подшипниками и валом.

где: 1 — колесо компрессора, 2 — осевой (упорный) подшипник, 3 — радиальные (втулочные), 4 — подшипники, 5 — вал, 6 — колесо турбины.

Подшипники турбокомпрессора могут быть подшипниками скольжения (как на картинке выше) или роликоподшипниками. Турбокомпрессоры, работающие на выхлопных газах, с роликоподшипниками более эффективны, чем на подшипниках скольжения, имеют лучшие переходные характеристики (они ускоряются быстрее) и могут обеспечивать более высокое давление наддува при частичных нагрузках двигателя. Основными недостатками роликоподшипников являются надежность при длительной эксплуатации и акустические характеристики (более шумный). Роликовые подшипники в основном используются в высокопроизводительных турбокомпрессорах для мотоспорта.

Подшипники могут работать нормально, если температура выхлопных газов ниже 800 ° C, охлаждения масла достаточно для поддержания нормальных условий работы. На бензиновых двигателях, где температура выхлопных газов может превышать 1000 ° C, необходим центральный (подшипниковый) корпус с водяным охлаждением.

Корпус сердечника также содержит некоторые уплотнительные элементы, которые предотвращают попадание масла в выпускной или впускной коллектор, а также максимально сокращают попадание всасываемого воздуха и выхлопных газов (картерных газов).

Компрессор состоит из крыльчатки с осевым притоком и радиальным выпуском (крыльчатки компрессора) и литого алюминиевого корпуса. Во избежание утечки воздуха между компрессором и корпусом зазор должен быть минимальным.

Рабочее колесо компрессора (крыльчатка) обычно изготавливается из литого алюминиевого сплава. В современных турбокомпрессорах рабочее колесо фрезеровано из алюминиевого сплава. Во избежание помпажа компрессора (реверсирования воздушного потока при закрытии дроссельной заслонки) корпус компрессора оборудован продувочным (отрывным) клапаном.

В некоторых коммерческих транспортных средствах с очень долгим сроком службы компонентов крыльчатка компрессора (крыльчатка) фрезерована из титанового сплава.

Компрессоры бензиновых двигателей с турбонаддувом имеют продувочные (выталкивающие) клапаны, которые должны предотвращать скачки давления при резком падении нагрузки на двигатель (например, дроссельная заслонка переходит из полностью открытого в полностью закрытое положение за очень короткое время). Большинство современных продувочных клапанов имеют электрический привод, а события открытия и закрытия контролируются модулем управления трансмиссией (PCM).

Сторона турбины нагнетателя состоит из:

  1. Диффузора.
  2. Корпуса.
  3. Крыльчатки.
  4. Перепускной заслонки для отработанных газов.

Назначение диффузора — ускорить поток выхлопных газов и равномерно распределить его по лопаткам (колесу) турбины. Диффузор встроен в спиральный корпус турбины.

Корпус турбины должен выдерживать очень высокие температуры и сделан из высоколегированного чугуна. В зависимости от типа повышения давления выхлопных газов существует два типа кожуха турбины:

  • Корпус импульсного наддува
  • Корпус постоянного давления

В случае импульсного наддува трубы выхлопных газов, идущие от каждого цилиндра, проходят отдельно в корпус турбины. Корпус турбины спроектирован таким образом, чтобы максимально предотвращать смешивание потоков выхлопных газов перед входом в рабочее колесо турбины.

Читайте также:
Снятие и замена топливного фильтра на ваз 2113, 2114, 2115 с фото

В случае наддува постоянного давления из выхлопных труб всех цилиндров, выхлопные трубы подключены к выпускному коллектору большого объема, который отфильтровывает отдельные импульсы давления.

Стандартное колесо турбины имеет радиально-впускную и осевую конструкции. Поскольку турбинное колесо должно работать в условиях очень высоких температур, оно изготовлено из стального сплава, содержащего большое количество никеля.

Чтобы минимизировать турболаг (задержку разгона двигателя), момент инерции массы компрессорного колеса, турбинного колеса и вала должен быть как можно меньше. По этой причине исследуются высокопрочные материалы с низкой плотностью для использования в будущих турбокомпрессорах.

Где: 1 — корпус компрессора, 2 — колесо компрессора (крыльчатка), 3 — пневматический привод, 4 — центральный (подшипниковый) корпус, 5 — рычаг управления перепускным клапаном, 6 — перепускной клапан, 7 — корпус турбины, 8 — колесо турбины.

Давление наддува регулируется путем регулирования количества выхлопных газов, проходящих через турбинное колесо. Поток выхлопных газов в турбине регулируется перепускным клапаном, который может приводиться в действие пневматическим или электрическим приводом.

Подача воздуха для управления пневматическим блоком перепускной заслонки может осуществляться за счет самого давления наддува или за счет давления вакуума (от вакуумного насоса автомобиля). Недостатком использования давления наддува является то, что управление перепускным клапаном зависит от нагрузки двигателя (давления наддува). С помощью вакуумного насоса давление наддува можно регулировать независимо от рабочего состояния двигателя.

Последние технологии турбокомпрессоров предусматривают прямое электрическое включение перепускной заслонки. Это обеспечивает более быстрое и точное срабатывание перепускной заслонки независимо от оборотов двигателя.

Высокопроизводительные турбокомпрессоры — EFRTM от BorgWarner

Где: 1 — колесо компрессора, 2 — колесо и вал турбины Gamma-Ti, 3 — корпус турбины из нержавеющей стали, 4 — перепускной клапан с высоким расходом, 5 — задний диск турбины, 6 — двухрядный шарикоподшипник с керамическими шариками и металлическим сепаратором, 7 — корпус компрессора, 8 — встроенный клапан рециркуляции компрессора (CVR), 9 — электромагнитный клапан управления наддувом (BCSV), 10 — датчик скорости.

Турбокомпрессор Continental RAAX

RAAXTM (что означает «радиально-осевой») — это новый турбокомпрессор Continental с наиболее важной инновацией в конструкции турбины. В отличие от наиболее распространенного на сегодняшний день типа бензиновых турбонагнетателей, радиального турбонагнетателя, который имеет радиальный впуск выхлопных газов, новый турбокомпрессор Continental имеет радиально-осевой (полурадиальный / полуосевой) впускной канал.

Соответствующая специальная конструкция лопастей позволяет примерно на 40% снизить крутящий момент инерции турбинных колес. Это означает, что турбокомпрессор быстрее реагирует на изменения нагрузки двигателя, поэтому давление наддува создается быстрее, а турбо задержка сводится к минимуму. В дополнение к этому значительному улучшению реакции, технология RAAXTM также приводит к повышению эффективности до 3% в соответствующем рабочем диапазоне двигателя, что приводит к снижению выбросов.

Турбонаддув в автомобиле: принцип работы

В массовом сознании слова «турбо», «турбонаддув», «турбированный двигатель» прочно ассоциируются со спортивными машинами и мощными двигателями. При этом, немногие представляют себе устройство и принцип работы турбонаддува. Хотя ничего особенного сложного в нём нет.

Что такое турбонаддув в автомобиле

Турбонаддув это специальная система, которая закачивает (наддувает) дополнительный воздух в цилиндры двигателя. Такая система используется не только в автомобильных двигателях, но и в авиационных, тепловозных, корабельных, и многих других. Широкое распространение турбонаддува вызвано тем, что это очень простой и дешёвый способ повышения мощности двигателя. Турбировать можно почти любой автомобильный двигатель, даже если это изначально не предусмотрено конструкцией.

Устройство турбонаддува относительно простое:

  • турбокомпрессор;
  • охладитель воздуха;
  • набор патрубков;
  • выпускной коллектор;
  • ряд датчиков и клапанов.

Полный комплект не занимает много места, его установка не требует серьезной переработки силового агрегата. Поэтому поставить турбонаддув на свою машину может любой желающий. Цены на турбосистемы сильно разнятся, в зависимости от мощности, эффективности, фирмы-производителя.

Принцип работы турбонаддува

Принцип работы турбонаддува достаточно прост. Выхлопные газы, которые выбрасывает двигатель, попадают на турбину и придают ей вращение. Турбина, в свою очередь, передаёт крутящий момент компрессору, он засасывает воздух и сжимает его. После этого сжатый воздух направляется в цилиндры двигателя. Опционально в эту схему вносится промежуточный охладитель воздуха — интеркулер. Он снижает температуру сжатого компрессором воздуха, соответственно уменьшая его объём. Это избавляет от неприятных эффектов вроде детонации, и повышает общую эффективность системы.

Смысл закачивания дополнительного воздуха становится ясен, если вспомнить принцип работы двигателя внутреннего сгорания. В его цилиндрах сгорает топливо-воздушная смесь, этот процесс толкает поршень, который проворачивает коленвал. Но, для эффективного сгорания смеси важно соблюдать правильное соотношение топлива и воздуха, поэтому нельзя повысить мощность просто добавив в смесь больше топлива. Вместе с увеличением количества топлива нужно увеличивать и количество воздуха.

Это можно сделать увеличив объём цилиндра, чтобы в него помещалось побольше воздуха. Но можно пойти другим путём — повысить плотность воздуха, загоняемого в цилиндры. Тогда с той же единицы рабочего объёма двигателя можно снимать ощутимо большую мощность. Хороший пример — спорткары, где каждый литр объёма может выдавать более 150 л.с. Конечно, помимо турбонаддува там используют ещё массу ухищрений. Но вполне реально получить 105-115 л.с. на литр с помощью одного только турбирования.

Читайте также:
Замена выжимного подшипника lada priora (ваз приора) своими руками

Что такое турбояма или турболаг

Принцип работы турбонаддува заключается в том, что двигатель «разгоняет» себя за счёт своей же работы. Эта особенность вызывает появление такой проблемы как турбояма или турболаг. Она проявляется в виде провала мощности, который появляется после резкого нажатия на педаль газа.

На заре турбированных моторов доходило до смешного — слишком резко и сильно нажав на педаль «газа», можно было полностью заглушить его. Сейчас сложная механическая и электронная начинка не даст этому произойти, но эффект турбоямы с неприятным провалом мощности всё равно остаётся. Особенно этим страдают дешевыё турбо-системы или неправильно установленные и настроенные.

Чтобы сгладить турболаг, используют хитрые электронные системы упреждающего наращивания оборотов. Они регистрируют резкие нажатия на педаль акселератора и раскручивают компрессор электроприводами, не дожидаясь, когда «проснётся» турбина. Цена таких решений, как правило, немаленькая, поэтому они встречаются в осномном только на спортивных авто.

Читайте также: Чем отличается турбина от компрессора и что лучше?.

Плюсы и минусы турбонаддува

Использовать турбонаддув имеет смысл только в том случае, если крайне необходимо придать автомобилю более динамичный, спортивный характер. Это действительно отличный способ минимальными затратами повысить мощность двигателя. Турбирование увеличивает максимальную скорость машины и улучшает ее динамику.

При этом турбонаддув позволяет обходиться меньшим объемом топлива по сравнению с двигателем такой же мощности и большего объёма . На эту деталь нужно обратить самое пристальное внимание, так как сам по себе турбонаддув не уменьшает, а увеличивает расход топлива. Потому что при росте количества воздуха в цилиндрах нужно соответствующе нарастить подачу топлива.

Помимо увеличенного расхода горючего, турбонаддув имеет следующие недостатки:

  • турбокомпрессор вращается на огромных оборотах и сильно нагревается, что отрицательно сказывается на его долговечности;
  • непредусмотренное изначально увеличение мощности усиливает износ всех частей двигателя;
  • турбонаддув предъявляет повышенные требования к качеству топлива и моторных масел;
  • турбирование включает в себя изменения настроек работы двигателя, фаз газораспределения;

Читайте также: Что такое турботаймер и для чего он нужен.

Турбонаддув — принцип действия, достоинства и недостатки

Статья о том, что такое турбонаддув, как он работает, его основные плюсы и минусы. В конце статьи — видео об особенностях и принципах работы турбонаддува. Статья о том, что такое турбонаддув, как он работает, его основные плюсы и минусы. В конце статьи — видео об особенностях и принципах работы турбонаддува.

Автомобильный двигатель должен обладать такими характеристиками, которые позволили бы ему не отставать от современности. Технические усовершенствования с каждым годом даются все труднее, потому что велосипед-то изобретать никому не хочется, а улучшать качество мотора необходимо.

Поэтому весьма неплохим решением является использование системы принудительного нагнетания воздуха в камеру сгорания. Самые последние инженерные конструкции охватывают не только улучшение принудительного нагнетания воздуха в топливную систему, но и установку такого же устройства в систему выхлопа отработанных газов.

Для чего нужен турбонаддув

Чтобы понимать важность работы турбонаддува и принцип его действия, необходимо знать, что двигатель не может потреблять топливо в чистом виде. Для вспышки бензина в герметичной емкости нужен воздух, иначе двигатель работать не будет.

То есть, в камеру сгорания должна поступать смесь, состоящая из топлива и воздуха в нужной пропорции. В цилиндре эта смесь сгорает. Появившиеся в результате сгорания газы совершают свою главную работу и затем удаляются через систему выхлопа.

Проще говоря, с помощью турбонаддува воздух сжимается, и в камеру сгорания он поступает в большем количестве, нежели при атмосферном давлении.

Устройство и принцип работы турбонагнетателя

Главная деталь нагнетателя, выполняющая основную функцию – это крыльчатка с лопастями. Вращаясь с огромной скоростью (200 тыс. оборотов в минуту) и действуя как компрессор, она закачивает воздух в турбинную камеру.

После этого происходит сжатие воздуха, за счет чего объем, который этот воздух занимает, уменьшается. Однако давно известно, что по законам физики во время сжатия воздух имеет свойство нагреваться. И это является главным недостатком системы турбонаддува.

Разумеется, эта проблема не могла пройти мимо внимания конструкторов. Решая эту задачу, специалисты попробовали использовать промежуточное охлаждение воздуха на пути его перехода в двигатель.

В результате появился интеркулер. В этом устройстве применяется эффект теплообменника, который имеет свойство охлаждать воздух за счет хладагента. Интеркулер способен увеличить мощность мотора до 20%, и при этом он еще снижает вероятность детонации выхлопных газов.

Особой разницы между турбонаддувом бензиновых и дизельных двигателей почти нет. Отличие лишь в степени наддува. Дизельные двигатели требуют большего давления, и поэтому они оснащены более мощными нагнетателями воздуха. В бензиновых моторах установлены нагнетатели меньшей мощности, потому что при слишком большом давлении в камере сгорания может возникнуть детонация.

Преимущества турбонаддува

«Дармовая» дополнительная мощность. Существует расхожее мнение: наличие добавочной турбины на выхлопном коллекторе мотора порождает добавочную энергию, которая должна вращать точно такую же турбину на впуске, в результате чего выхлопные газы становятся бесплатным источником энергии для нагнетателя.

Читайте также:
Где находится номер на двигателе (вин-код) Рено Меган 2

Однако эта концепция весьма спорная, потому что существует так называемое сопротивление выпуска. Автомобильные конструкторы многие десятилетия добивались снижения этого сопротивления, потому что именно в этом случае повысится мощность двигателя.

Для этого в систему монтируется специальное генерирующее устройство, которое значительно снижает выходное сопротивление. Поэтому было бы неправильным считать работу турбонаддува на дармовой энергии. «Дешевая придаточная энергия» — это будет звучать более точно.

В техническом отношении этот процесс не представляет ничего сложного. Нагнетатель представляет собой устройство, состоящее из двух колес – компрессорного и турбинного. Турбинное колесо захватывает выхлопные газы, приводящие его в движение. В результате начинает вращаться и компрессорное колесо, которое и служит для сжатия воздуха.

Компрессор в обязательном порядке контактирует с системой охлаждения, потому что в процессе действия его температура поднимается довольно высоко. Сила наддува регулируется с помощью перепускного клапана. В случае необходимости он может переводить часть выхлопа мимо турбины, чтобы понизить внутрисистемное давление.

Повышение мощности двигателя без увеличения его объема и массы. Технология турбонаддува позволяет повышать мощность двигателя без увеличения объема цилиндров и их количества. В результате легкие и небольшие по размеру моторы приобретают отличные характеристики, и, кроме этого, сокращается общая масса автомобиля, уменьшаются тормозной путь и время разгона.

Экономичность. Расход топлива у двигателей, оснащенных системой турбонаддува, в разы меньше, нежели расход топлива у мотора такой же мощности с простым атмосферным нагнетанием воздуха. Это объясняется тем, что в цилиндрах с турбонаддувом на один ход поршня тратится намного меньше топлива за счет полного его сгорания. То есть, бедная смесь компенсируется дополнительным напором воздуха, и в результате мощность увеличивается.

Недостатки

Зависимость от оборотов. «Турбояма». Проблема заключается в следующем: нет активного ускорения при разгоне на малых оборотах. Динамика разгона слабая, уступающая даже машинам с атмосферным нагнетанием. А все дело в том, что при малых оборотах энергия выхлопных газов слабая, и, соответственно, турбина нагнетателя тоже вращается слабо, создавая минимальное давление смеси в камере сгорания. То есть, нужный эффект от турбонаддува возникает только при высоких оборотах двигателя.

Кроме этого, есть еще одна проблема: медленность процесса нагнетания воздуха. Действительно, для того, чтобы создать нужное давление на впуске, необходимо некоторое время. Специалисты проводят инженерные исследования в этой области, и уже в какой-то степени удалось уменьшить этот интервал в динамике работы нагнетателя.

Помимо этого, наличие вариатора или автоматической трансмиссии дает возможность машине во время разгона автоматически переключаться на пониженную передачу. За счет этого вредные последствия от инертности нагнетателя ликвидируются.

Сегодня имеются следующие способы решения проблемы инертности турбонаддува:

    битурбонаддув (двойной наддув);

турбина с адаптивной геометрией;

  • комбинированный наддув.
  • При двойном турбонаддуве применяются две небольшие турбины, которые в совокупности работают намного быстрее, чем одна с номинальным размером. Число цилиндров распределяется между этими турбинами поровну. Аналогом такой системы может быть применение нескольких компрессоров, которые приходят в движение на разных оборотах мотора, каждый в своем режиме.

    Турбина с адаптивной геометрией способна изменять размер впускного канала и тем самым регулировать силу потока выхлопных газов, что также повышает эффективность работы системы.

    Комбинированный наддув состоит из турбокомпрессора и механического нагнетателя. Нагнетатель создает нужное давление на малых оборотах, но как только обороты возрастают до определенной величины, в работу включается турброкомпрессор.

    Высокая температура. Как уже было сказано, сжатие воздуха влечет за собой его нагрев, что отражается на работе мотора не самым лучшим образом. Поэтому зачастую приходится подключать дополнительное охлаждение, и на это уходит часть энергии.

    Однако несмотря на перечисленные недостатки, турбонаддув – это отличное средство для повышения мощности и эффективности ДВС, а также его экономичности. Кроме того, многолетний опыт специалистов показывает, что варианты усовершенствования этой системы еще не исчерпаны.

    Видео об особенностях и принципах работы турбонаддува:

    Что такое турбодвигатели, и надежны ли они [Пост для новичков]

    Простыми словами: почему турбомоторы все чаще встречаются на автомобилях?

    По мере того, как правительства самых автомобилизированных стран мира продолжают бороться за экономию топлива и регулирование выбросов, двигатели с турбонаддувом среднего и малого объема становятся все более распространенными.

    Считается, что компактные двигатели с турбонаддувом могут сочетать в себе превосходную топливную экономичность при аккуратном использовании в городском потоке (по крайней мере, на бумаге) и при этом иметь высокую пиковую мощность (как минимум на бумаге) на максимальных оборотах. По этой причине автопроизводители повсеместно начали использовать этот тип моторов для того, чтобы их продукция могла соответствовать все более строгим стандартам по экологичности выбросов и, как прежде, давать клиентам тот же уровень мощности, каким он был раньше, а иногда предлагать даже более высокий.

    В этой статье мы кратко опишем, как работает двигатель с турбонаддувом (иногда их также называют «двигатели с принудительной индукцией»), и ответим на распространенные вопросы потребителей, которые рассматривают как вариант покупку турбированных среднеобъемников, но ни разу с ними не сталкивались.

    Читайте также:
    Разное о Renault: особенности, выбор и покупка, обслуживание и ремонт авто

    Но прежде сделаем небольшое отступление: в наши дни турбированные двигатели можно обнаружить на всех типах транспортных средств, включая спорткары, кроссоверы, внедорожники и даже пикапы, поэтому мы надеемся, что этот пост вооружит вас полезными базовыми знаниями, которые вам понадобятся при выборе нового или подержанного современного автомобиля.

    Что такое турбодвигатель, и как работает турбированный мотор?

    Если говорить простыми словами, работа турбины заключается в следующем: турбокомпрессор втягивает воздух, сжимает его, а затем подает сжатый воздух во впускной коллектор вашего двигателя. Этот плотный, насыщенный кислородом воздух под давлением затем резко поступает в камеру сгорания в тот момент, когда поршень совершает движение вниз. С большим количеством кислорода, поступающего в двигатель на более высокой скорости, можно сжечь больше топлива за один и тот же временной промежуток. А сжигая больше топлива, вы получаете больше энергии. Мощность растет, автомобиль становится более восприимчивым к нажатию на педаль газа.

    Однако это только одна часть процесса наддува. Второй, не менее важный этап инициируется после завершения цикла сгорания. Раскаленные отработавшие газы на большой скорости устремляются по выпускному коллектору, выходят из камеры сгорания через выпускное отверстие. По мере продвижения на определенном отрезке выпускного канала (у разных автомобилей это расстояние разное, но по общему правилу чем оно меньше, тем больше мощности отдается турбине) газы встречаются с лопастями турбонагнетателя и начинают вращать колесо турбины за счет очень большого давления и, конечно же, скорости потока.

    Вращающееся колесо компрессора втягивает новую прохладную часть атмосферного воздуха с противоположной стороны турбины при помощи аналогичных лопастей, начиная процесс сначала.

    Это не сложный процесс, но новичку его, может быть, будет трудно представить, поэтому взгляните на эту диаграмму:

    Все работает на первый взгляд, как часы, но с процессом доставки есть одна небольшая проблема: прохладный атмосферный воздух во время сжатия нагревается, тепло отнимает мощность вашего двигателя.

    Инженеры давно решили и эту нестыковку. Сжатый воздух перед подачей во впускной коллектор должен быть охлажден. Для того чтобы сделать это, воздух под давлением на своем пути к впускному коллектору пройдет через теплообменный аппарат, иногда вызываемый «intercooler».

    Принцип работы аппарата идентичен тому, что происходит в жидкостном радиаторе, с тем лишь отличием, что воздух охлаждает воздух (самая распространенная схема «воздухо-воздушная»), поскольку, чтобы охладить разогретый сжатый воздух, используется внешний воздушный поток, набегающий на автомобиль по мере того, как вы движетесь вниз по дороге. Также существуют промежуточные охладители наддувочного воздуха, работающие на воде, в таком радиаторе используется холодная вода для охлаждения воздушной массы до нужной температуры.

    Плюсы и минусы турбированного двигателя

    Теперь, когда новички познакомились с основами работы турбины (ее также называют «улиткой» за визуальное сходство входной части турбины с панцирем моллюска), можно приступать к рассмотрению двух основных преимуществ турбированного двигателя – большая выходная мощность и повышенная топливная эффективность.

    Поскольку турбонагнетатель позволяет небольшому двигателю производить больше мощности, разработчики могут использовать силовые агрегаты меньшего объема.

    Меньший по объему двигатель, как правило, потребляет меньше топлива, чем более объемный мотор (данный постулат сейчас активно подвергается сомнениям, особенно ввиду множественных скандалов, связанных с занижением экономичности и экологичности), что способствует некоторой экономии топлива на определенных режимах работы агрегата (обычно это неспешная работа мотора на низких оборотах в городских условиях).

    Двигатели с турбинами, нагнетая больше обогащенного кислородом воздуха внутрь цилиндров, улучшают сгораемость горючей смеси, уменьшая объем количества выбрасываемых вредных отходов. По этим причинам двигатель с турбонаддувом может быть более эффективным, чем атмосферный двигатель (без установленной турбины) при аккуратном движении.

    Однако эффективность и экологичность турбированного двигателя может быстро упасть, если вы начнете агрессивно ездить. Почему это неминуемо произойдет? И здесь все достаточно банально. Для того чтобы двигатель работал правильно и не выходил из строя, он должен достичь надлежащего соотношения топливовоздушной смеси, миксующейся в камере сгорания (как правило, это происходит в камере сгорания). Турбина же будет доставлять больше кислорода в двигатель, особенно при условии полного нажатия на педаль газа: «тапок в пол», поэтому, во-первых, двигатель начнет сжигать больше топлива при таком сценарии.

    Работа турбонагнетателей также увеличивает давление в двигателе вашего автомобиля. При работе мотора с высоким давлением вы рискуете столкнуться с «предварительным зажиганием» – так называется несанкционированное воспламенение топлива до того момента, как свечи зажигания должны дать искру и воспламенить его. Для проявления этого явления достаточно мощно ускориться на турбированном автомобиле. Давление внутри цилиндров подскочит, что увеличит шансы на преждевременное зажигание топливовоздушной смеси.

    Современные двигатели оснащены датчиком детонации и программным обеспечением, которые помогают предотвратить предварительное воспламенение, обнаруживая его и распыляя дополнительное топливо в камеру, способствуя дальнейшему увеличению расхода топлива.

    Читайте также:
    Замена заднего тормозного цилиндра

    По этой причине многие современные турбированные двигатели также будут рассчитаны на работу на премиальном бензине. Топливо с более высоким октановым числом имеет меньше шансов к детонации, что делает его идеальным для небольших турбомоторов с высокой степенью сжатия.

    Вы можете выяснить, какой бензин подходит для вашего автомобиля, в руководстве пользователя. Но если это современный турбированный двигатель, есть хороший шанс, что он использует 95 или 98 бензины.

    В то время как многие современные двигатели довольно надежны, турбированные двигатели поставляются с рядом дополнительных компонентов на пути к самому турбокомпрессору: интеркулера и всех трубопроводов, необходимых для доставки сжатого охлажденного воздуха в двигатель. Это может сделать ремонт двигателя или его обслуживание дороже по сравнению с традиционным атмосферным мотором.

    В плане надежности все зависит от транспортного средства. Надежнее всего изучить рейтинги надежности и затраты на ремонт приглянувшегося турбированного автомобиля, поскольку эти цифры варьируются от модели к модели. В целом вам больше не нужно беспокоиться о том, что автомобиль с турбонаддувом ненадежен – технология прошла долгий путь с 1980-х годов.

    Напомним плюсы и минусы турбированного двигателя:

    За:

    Больше мощности и крутящего момента от двигателя меньшего объема;

    Больше крутящего момента на низких оборотах;

    Может обеспечить лучшую топливную экономичность при движении в спокойном режиме

    Против:

    Экономия топлива «испарится», если ездить агрессивно;

    Может потребоваться дорогое топливо премиум-класса (скорее всего, так и будет);

    Увеличится стоимость ремонта и обслуживания

    Надежны ли турбированные двигатели?

    Как мы кратко коснулись выше, двигатели с турбонаддувом сложнее и имеют больше деталей, чем моторы без турбонаддува. В то время как большинство современных двигателей с турбонаддувом довольно надежны, более сложная конструкция может повысить затраты на ремонт, если у вас возникнут проблемы или произойдет столкновение на дороге. Турбина может также увеличить износ некоторых компонентов из-за повышенной нагрузки, что может сократить жизнь двигателя с течением времени. Плюс не стоит забывать, под какими нагрузками трудится сама турбина. Скорости вращения лопаток гигантские, нагрев большой – выйти из строя на 100-150 тыс. км может легко! Плюс многое зависит от смазочных материалов, качества самой турбины, качества топлива и т. д. А стоимость турбокомпрессоров может «кусаться».

    По общепринятому правилу чем проще мотор, тем он надежнее. Атмосферный двигатель без турбины проще, значит, и надежнее.

    Как я могу определить отказ турбины?

    Ниже приведем подробную табличку наиболее распространенных отказов турбин. Чтобы узнать больше, переходите по ссылке выше.

    При увеличении скорости слышен свист турбины. Возможно, поврежден вал турбины. Свист вызван из-за металлического трения.

    Утечка масла в турбокомпрессоре. Возможно на валу есть сколы (износ). Масло попадает в выхлопную систему.

    Возможно, турбине не хватает воздуха для подачи в двигатель. В результате в камере сгорания неправильная смесь топлива и кислорода. В итоге в процессе сгорания топлива образовывается черный дым. Скорее всего, в автомобиле есть утечка, поступаемого в двигатель, воздуха.

    Что такое наддув?

    Турбонагнетатель и нагнетатель предназначены для достижения одной и той же цели: увеличить мощность двигателя, нагнетая воздух в двигатель вашего автомобиля.

    Турбокомпрессор использует отработанные выхлопные газы для вращения колеса компрессора и подачи сжатого воздуха в двигатель. Нагнетатель, однако, прикреплен к коленчатому валу вашего двигателя ремнем. Ремень вращает два «винтовых ротора» внутри нагнетателя, которые сжимают воздух и подают его в двигатель. Воздух подается в цилиндры через отверстие внизу короба нагнетателя. Вы можете увидеть, как это работает, в gif ниже:

    Мы надеемся, что эта статья ответила вам на все основные вопросы, которые у вас могли возникнуть относительно двигателей с турбонаддувом. Приятной езды на хороших автомобилях!

    7 главных минусов и 2 плюса турбомоторов

    Чем турбомотор отличается от атмосферного?

    Атмосферный мотор засасывает воздух в цилиндры под действием разрежения, которое возникает, когда поршень движется к нижней мертвой точке. В большинстве случаев давление в цилиндре в конце хода впуска чуть ниже атмосферного. И вот с этим количеством воздуха и осуществляется рабочий цикл мотора. Наддувный двигатель получает на входе в цилиндр воздух, сжатый компрессором до определенного давления, а потому его в цилиндр войдет больше, чем у мотора со свободным всасыванием. Больше воздуха — больше кислорода, а значит, и топлива сгорит больше, и мощность при том же рабочем объеме поршневой части будет выше (или мотор компактнее при сохранении мощности).

    Поскольку воздух в компрессоре подогревается, температуру перед подачей в цилиндр желательно снизить. Это делает специальный охладитель — интеркулер. Компрессоры могут использоваться разных типов — и с приводом от коленвала, и волновые обменники давления, но наиболее распространен турбонаддув. Последний способ использует энергию выхлопных газов для вращения центростремительной турбины, а сидящее на том же вале колесо центробежного компрессора обеспечивает сжатие воздуха перед подачей в цилиндры.

    Как видим, конструкция наддувного мотора сложнее, чем атмосферника. Отсюда и первый недостаток турбомоторов.

    Читайте также:
    Замки Рено Логан: замок зажигания и двери

    1. Низкая надежность

    Наддувные двигатели состоят из большего числа агрегатов, а надежность многокомпонентной системы всегда ниже, чем у более простой. Нагрузки на детали больше из-за большей литровой мощности. Да и конструкционные материалы в автомобильной промышленности используются преимущественно недорогие. Это же вам не аэрокосмическая отрасль…

    К примеру, у турбокомпрессора есть система регулирования давления наддува, которая порой может заедать и отказывать. У редакционного Volkswagen Golf уже дважды при пробеге 80 000 и 100 000 км полностью теряла подвижность тяга привода клапана перепуска газов мимо турбины.

    2. Недостаточный ресурс

    Все мы вздыхаем по моторам-миллионникам конца прошлого века. Сейчас ресурс мотора в 400 000 км считается огромным достижением, а в прошлом он был нормой. Турбодвигатели современных автомобилей до таких пробегов не доживают. Турбокомпрессоры на бензиновых моторах редко ходят больше 150 000 км, а начавшая «хандрить» турбина вскоре может погубить и поршневую часть. Ведь турбокомпрессор может «выхлебать» весь запас моторного масла — в поддоне и поршневой части ничего не останется.

    А еще многие производители с целью сэкономить «апгрейдят» атмосферные моторы до турбонаддувных, не особо заморачиваясь усилением некоторых деталей. Соответственно, высокие нагрузки на поршневую часть при небольшом усилении конструкции приводят к снижению ресурса.

    3. Необходимость более частого и высококвалифицированного обслуживания

    Многие производители для своих моделей с турбомоторами снизили периодичность ТО с 15 000 до 10 000 км. Так поступили, к примеру, Geely и Haval.

    Наддувный мотор сложнее в обслуживании и особенно в диагностике. У него гораздо больше количество дополнительных соединений в системе турбонаддува. Потерять герметичность могут: подвод и отвод воздуха, подвод и отвод отработанных газов, системы подачи масла под давлением и его слива, а также подачи охлаждающей жидкости. Все это требует дополнительного внимания и опыта у сервисмена во время ТО.

    4. Дорогой ремонт

    Ремонт наддувного мотора всегда обходится дороже. Даже если турбокомпрессор в ремонтной фирме и не трогали, то прайс на восстановление двигателя все равно выше. Просто потому, что разбирать-собирать все перечисленные выше системы дольше и сложнее. А если предстоит замена турбокомпрессора, то готовьтесь выложить от 60 000 руб. Восстановление узла может потребовать половину этой суммы.

    5. Обязательно применять хорошее топливо и смазки

    Все современные моторы довольно требовательны к качеству топлива и моторного масла. Но если атмосферник на некачественных жидкостях «умрет» не сразу, то жизнь форсированного наддувного мотора будет измеряться минутами. Кроме того, расход даже самого дорогого масла у наддувного мотора будет выше, чем у большинства атмосферников.

    Отдельного разговора требует расход топлива. Любой маркетолог, желающий продать вам машину с турбомотором, будет уверять, что она экономичнее, чем автомобиль с атмосферным двигателем. В теории так и есть. Но ведь турбомашина — это «великий провокатор». Некоторые автомобилисты сознательно выбирают турбодвигатель, чтобы ездить напористо и агрессивно. В этом случае расход будет не меньше, а даже больше, примерно на 30%, чем у спокойного водителя. Для неторопливого водителя мощность турбомашины может показаться избыточной, а повышенные затраты на содержание, (частые ТО, дорогие бензин и масло) — неоправданными.

    6. Необходимость дополнительного охлаждения

    Недаром многие сигнализации имеют опцию «турботаймер». Это устройство позволяет не глушить разогретый турбомотор сразу после остановки машины, а дает двигателю поработать на холостом ходу для охлаждения — прежде всего турбины. Похожий алгоритм у некоторых мощных автомобилей штатно заложен в блок управления двигателем. Без этого в остановившейся, но раскаленной докрасна турбине масло закоксуется, нарушив герметичность уплотнений. В итоге значительно вырастет расход масла на угар.

    7. Проблемы с ликвидностью

    Обо всех вышеперечисленных неприятностях осведомлены, в той или иной степени, многие автолюбители. Именно поэтому большинство предпочтет на вторичном рынке машину с атмосферным двигателем. А заезженные «турбозажигалки» приобретать будут, в основном, молодые поклонники всех серий «Форсажа».

    Впрочем, есть у турбомоторов и неоспоримые плюсы.

    1. Отличная характеристика крутящего момента

    Разгон автомобиля — хоть с механической коробкой передач, хоть с автоматом — очень зависит от того, насколько быстро мотор из режима холостого хода сможет достигнуть оборотов максимальной мощности. А мощность, как известно, пропорциональна произведению оборотов коленвала на крутящий момент. Именно поэтому нужно, чтобы мотор на как можно более низких оборотах выдавал большой крутящий момент.

    Наддувный мотор проектируют так, что турбокомпрессор обеспечивает довольно высокое давление наддува очень «рано», при небольших оборотах коленвала. В результате мы получаем большой крутящий момент на небольших оборотах. Далее момент увеличивать нельзя во избежание чрезмерных нагрузок на детали мотора. Начинает работать перепускной клапан, направляя часть выхлопных газов в обход турбины. Так производительность турбокомпрессора ограничивается, а на кривой крутящего момента появляется горизонтальная полка. Вот за такую характеристику турбомоторов их и любят, особенно активные водители.

    2. Низкий расход топлива

    У атмосферного двигателя значительная часть энергии сгоревших газов теряется вместе с горячими выхлопными газами. Наддувный двигатель использует температуру и давление выпускных газов, срабатывая их в турбине. Меньше энергии пропадает зря, значит, больше используется для движения автомобиля. Но, повторюсь, при условии спокойной манеры вождения.

    Читайте также:
    Замена троса сцепления lada 2121 4x4 21213 (ваз нива)

    Турбодвигатели совершенствуются и захватывают все новые модельные ряды автомобилей самых разных производителей на всех континентах. Вначале они оккупировали дороги старушки Европы. Япония давно и массово загружает ими внутренний рынок. США и Корея немного более сдержанны в распространении турбированных двигателей. Зато Китай в последнее время массово пересаживается на турбонаддув. Так что за наддувными двигателями будущее. Если, конечно, их не вытеснят электрокары.

    • Самые надежные двигатели (из тех, что еще продаются) мы собрали тут.

    Дефлекторы

    Дефлектором называется аэродинамическое устройство, в виде изогнутого щитка, предназначенное для отклонения прямого потока воздуха во время движения автомобиля. Дефлектор изменяет направление движения воздуха, защищает автомобиль от насекомых, пыли и мелких камней, улучшает внешний вид автомобиля. Чаще всего на автомобиль устанавливают дефлекторы капота и боковых окон.

    Что такое дефлектор

    Название дефлектор образовано от латинского «deflecto» – отклонять. Эффект от использования дефлекторов появляется при движении автомобиля со скоростью не менее 80 км/ч.

    Аэродинамический дефлектор изначально устанавливался на гоночные болиды для придания им обтекаемой формы. Такой прием позволял не только увеличить скорость, но и существенно изменял внешний вид автомобиля. Впоследствии дефлекторы вошли в повседневную жизнь.

    Основные функции дефлектора:

    • изменение траектории прямого потока воздуха;
    • снижение сопротивления встречного потока воздуха за счет спроектированной по специальным расчетам формы;
    • защита от насекомых, пыли и мелких камней;
    • дополнительная циркуляция воздуха внутри салона.

    Дополнительная функция – изменение внешнего вида автомобиля в угоду модным тенденциям или изменившемуся корпоративному стилю для придания обтекаемой формы.

    Где применяются дефлекторы

    В зависимости от места установки на автомобиле дефлектор выполняет определенную функцию:

    • Радиатор. Дефлектор специальной формы служит для защиты от повреждений камнями среднего размера и от различных загрязнений.
    • Фары. Дефлектор существенно снижает вероятность их повреждения при движении по грунтовой дороге или насыпной дороге из щебня. Кроме того, защищает от насекомых и грязи. Создает оригинальный стиль.
    • Капот. Предохраняет от повреждения мелкими камнями, защищает от мусора. Снижает сопротивление встречного воздуха. Изменяет внешний вид.
    • Лобовое стекло. Устанавливается по обеим сторонам. Препятствует загрязнению боковых окон и салона при использовании стеклоочистителя, не позволяет увеличить «слепую зону».
    • Боковые окна. Вентиляция салона, защита от прямых потоков воздуха, солнцезащитный эффект, эстетика автомобиля.
    • Люк. Монтируется над передней частью. Защищает салон от пыли, снижает шум, препятствует попаданию осадков. Визуально меняет внешний вид автомобиля.
    • Заднее стекло. Незначительно стабилизирует ход автомобиля на скорости более 90 км/ч, исключает блики на центральном стоп-сигнале, защищает от загрязнения. Затеняет салон, тем самым предотвращает его перегрев.

    Место установки рассчитано на заводах – производителях с целью достижения максимального эффекта от использования.

    Форма и материал дефлектора

    Модель дефлектора зависит от места установки и требуемых функций. Каждая форма изготавливается в соответствии с аэродинамическими расчетами конкретно на каждую марку и модель автомобиля.

    Материал для изготовления дефлектора должен обладать следующими характеристиками:

    • прочность,
    • износостойкость,
    • термостойкость,
    • устойчивость к воздействию ультрафиолетовых лучей,
    • химическая стойкость,
    • эстетичность.

    Сочетанием таких свойств обладают и чаще всего применяются для изготовления дефлектора следующие материалы:

    • органическое стекло, состоящее из акриловой смолы, термопластичного прозрачного пластика и органического полимера. Дополнительные характеристики оргстекла: оно экологично, не имеет запаха, не изменяет цвет, прозрачно, не выделяет вредных веществ при нагреве. В зависимости от требований производителя стандартный состав может быть дополнен и усилен ударопрочными, светопропускающими, теплостойкими или другими компонентами. Дефлекторы из оргстекла можно подвергать окраске и тонированию.
    • Синтетические полимеры – высокомолекулярные неорганические соединения. Характеризуются эластичностью, малой хрупкостью, устойчивостью к агрессивным средам и относительно невысокой стоимостью.

    В зависимости от применяемого материала и производителя дефлекторы делятся по уровням качества:

    • Фирменные дефлекторы. Производятся на предприятиях – изготовителях автомобилей. Предназначены для установки на конкретные модели, выполнены с учетом целостности дизайна.
    • Дефлекторы среднего класса. Изготавливаются предприятиями химической промышленности. Характеризуются высоким или средним уровнем качества. Разделены по маркам и моделям автомобиля, но могут быть и универсальными, приобретать которые рекомендовано только в случае, если нет возможности подобрать фирменные. К этому сегменту относятся дефлекторы, производимые в Китае. Цена значительно ниже, чем у фирменных изделий.
    • Дефлекторы низкого качества. Изделия кустарного производства, отличаются низкой стоимостью. Чаще всего не имеют характерных изгибов, а, следовательно, не способны выполнять основную функцию. Монтаж таких дефлекторов крайне затруднен по причине несовпадения отверстий для крепления.

    Кроме того, качественный дефлектор может иметь как стандартную тонировку, так и окраску, совпадающую с цветом кузова или кардинально отличную от него. Дефлектор с полосой из хромированного пластика или нержавеющей стали, расположенной в верхней части, придает автомобилю более дорогой вид.

    Зачем устанавливают дефлектор на капот автомобиля

    Дефлектор, установленный на капот автомобиля, крепится над фарами и выполняет следующие функции:

    • увеличивает скорость движения автомобиля по трассе за счет снижения сопротивления потоку воздуха;
    • изменяет траекторию мелких предметов в потоке воздуха, тем самым предохраняет капот и лобовое стекло от повреждений;
    • минимизирует загрязнение лобового стекла насекомыми, мокрой грязью и пылью за счет отклонения потока воздуха;
    • изменяет внешний вид автомобиля.
    Читайте также:
    Снятие и замена топливного фильтра на ваз 2113, 2114, 2115 с фото

    Кроме того, для корректировки дизайна можно подобрать дефлекторы яркого цвета или установить тонированные, что придаст автомобилю более презентабельный вид.

    Плюсы и минусы дефлектора на капоте

    Установка дефлектора на капоте автомобиля имеет свои плюсы:

    • снижение риска повреждения лобового стекла и капота,
    • увеличение срока службы щеток стеклоочистителя,
    • экономия омывающей жидкости,
    • создание индивидуального стиля автомобиля.

    Важно помнить, что все положительные эффекты проявляются при движении по трассе со скоростью более 90 км/ч.

    Из минусов можно отметить:

    • при движении со скоростью менее 90 км/ч аэродинамические функции не обеспечиваются;
    • неправильно установленный дефлектор или использование детали низкого качества неизбежно приведет к повреждению краски на капоте;
    • внутренняя сторона неверно установленного или универсального дефлектора забивается листьями, снегом или влагой, что провоцирует появление коррозии;
    • гарантия на эксплуатацию нового автомобиля автоматически снимается при самостоятельной установке детали;
    • установка неподходящего по марке или модели дефлектора грозит появлением вибрации и разрушением лакокрасочного слоя;
    • не защищает от попадания камней среднего и крупного размера.

    Кроме того, неправильно закрепленный дефлектор может сорвать встречным потоком воздуха во время движения.

    Дефлекторы на окна автомобиля

    Дефлектор, установленный на боковое окно автомобиля, крепится в верхней части двери над стеклом и выполняет следующие функции:

    • препятствует проникновению в салон пыли и мусора;
    • защищает от попадания снега и дождя при опускании стекла на 3 – 5 см;
    • способствует лучшей вентиляции салона за счет движения направленных потоков, тем самым предотвращает запотевание стекол;
    • перенаправляет поток воздуха, защищает лицо водителя и пассажиров от встречного ветра;
    • защищает от прямых солнечных лучей;
    • препятствует попаданию влаги и загрязнений в салон в процессе очистки лобового стекла.

    Качественные дефлекторы изменяют внешний вид автомобиля и хорошо сочетаются с дефлектором капота.

    Плюсы и минусы дефлекторов на окнах

    Установка дефлектора на окнах автомобиля имеет свои плюсы:

    • более комфортные условия пребывания в салоне;
    • экономия средств на чистку салона;
    • создание индивидуального стиля автомобиля.

    Важно, что эффекты проявляются при движении со скоростью 60 км/ч.

    Из минусов можно отметить:

    • сложность точного подбора и установки;
    • потеря гарантии на эксплуатацию нового автомобиля при самостоятельной установке детали.

    При неправильной установке также существует риск срыва конструкции ветром.

    Варианты крепежа дефлекторов

    В зависимости от способа установки на автомобиль дефлекторы делятся на два вида:

    • Вставные – имеющие механическое крепление. Установка производится при помощи специального зажима в заводские отверстия или на кронштейны. Универсальные модели дефлекторов не всегда возможно установить этим способом.
    • Накладные – детали с клейким креплением. Установка с помощью двухстороннего скотча, специального клея или клеящей основы на определенные точки.
    • Прижимные – дефлекторы на клейкой основе, полностью прилегающие к кузову.

    Для рестайлинга капота предпочтительнее дефлектор с механическим креплением, а для боковых окон чаще применяется накладное или прижимное устройство на клейкой основе. Неоригинальный вставной дефлектор может затруднять подъем и опускание стекла.

    Как самостоятельно установить дефлекторы

    Перед покупкой дефлектора для самостоятельной установки следует проверить:

    • соответствие детали изгибам автомобиля;
    • соответствие отверстий для крепления кронштейнам или клипсам;
    • сочетание цвета и внешнего вида дефлектора и автомобиля;
    • наличие комплектующих.

    Порядок установки дефлектора с механическим креплением состоит их нескольких этапов:

    • очистить зону монтажа от пыли и грязи;
    • приложить деталь к поверхности кузова, маркером отметить места крепления;
    • на отмеченные точки наложить клейкие ленты;
    • смонтировать крепления на деталь в соответствии с маркировкой;
    • установить дефлектор, вклеить защитные силиконовые амортизаторы;
    • закрепить скобы;
    • установить резиновые прокладки под винты, жестко зафиксировать конструкцию.

    Установка дефлектора на клеящую основу выглядит следующим образом:

    • очистить зону монтажа от пыли и грязи, вытереть насухо;
    • приложить деталь, отметить места крепления;
    • строительным феном разогреть клеящую основу на дефлекторе;
    • закрепить деталь;
    • убрать остатки клея раствором, рекомендованным производителем, во избежание налипания мусора.

    По окончании монтажа важно проконтролировать:

    • отсутствие касания металлических частей крепления дефлектора и кузова автомобиля во избежание повреждения лакокрасочного покрытия;
    • отсутствие вибрации;
    • зазор между дефлектором и капотом должен быть не менее 1 см – так мусор и влага не будет задерживаться;
    • зазора между дефлектором и боковым окном быть не должно – в противном случае увеличивается риск срыва конструкции.

    Таким образом, аэродинамические функции дефлектора в повседневном ритме городской жизни практически не работают. Однако такой рестайлинг придает машине презентабельный вид, в определенной степени защищает от повреждений и увеличивает комфорт водителя и пассажиров в поездке. А самостоятельная установка детали – процесс творческий и совсем не сложный.

    Рейтинг
    ( Пока оценок нет )
    Понравилась статья? Поделиться с друзьями:
    Добавить комментарий

    ;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: