Делаем дополнительный датчик для вкл. вентилятора

Система автоматического управления вентилятором.

Часто в радиолюбительской практике возникает необходимость охлаждать методом обдува какие-либо мощные активные элементы: регулирующие транзисторы в блоках питания, в выходных каскадах мощных УНЧ, радиолампы в выходных каскадах передатчиков и т.д.

Конечно, проще всего включить вентилятор на полные обороты. Но это не самый лучший выход-шум вентилятора будет напрягать и мешать.

Система автоматического управления вентилятором-вот что может быть выходом из ситуации.

Такая система автоматического управления вентилятором, будет управлять включением/выключением и оборотами вентилятора в зависимости от температуры.

В данной статье предложен простой, бюджетный выход из ситуации…

Итак, некоторое время тому назад знакомый товарищ попросил изготовить ему систему автоматического регулирования оборотов вентилятора охлаждения для зарядного устройства. Поскольку готового решения у меня не было-пришлось поискать что-либо подходящее в интернете.

Всегда руководствуюсь принципом –«делать жизнь как можно проще», поэтому подыскивал схемы попроще, без всяких там микроконтроллеров, которые сейчас суют где надо, и где не надо. Попалась на глаза статья :http://dl2kq.de/pa/1-11.htm. Решено было испытать описанные в ней автоматы управления вентилятором…

Система автоматического управления вентилятором №1.

Система автоматического управления вентилятором

Принципиальная схема устройства показана ниже:

В данном случае применен вентилятор с рабочим напряжением 12 В.

Схема питается напряжением 15…18 В. Интегральный стабилизатор типа 7805 задает начальное напряжение на вентиляторе. Транзистор VT1 управляет работой интегрального стабилизатора. В качестве датчиков температуры использованы кремниевые транзисторы (VT2 и VT3) в диодном включении.

Схема работает следующим образом: в холодном состоянии датчиков температуры напряжение на них максимально. Транзистор VT1 полностью открыт, напряжение на его коллекторе ( а значит и на выводе 2 интегрального стабилизатора) составляет десятые доли вольта. Напряжение, подаваемое на вентилятор почти равно паспортному выходному напряжению микросхемы LM7805, и вентилятор вращается на небольших оборотах.

По мере прогрева датчиков температуры ( одного любого из них, или обеих) напряжение на базе VT1 начинает уменьшаться. Транзистор VT1 начинает закрываться, напряжение на его коллекторе увеличивается, а соответственно, увеличивается и напряжение на выходе микросхемы LM7805.

Обороты вентилятора также увеличиваются и плавно достигают максимальных. По мере остывания датчиков температуры происходит обратный процесс и обороты вентилятора уменьшаются.

Количество датчиков может быть от одного до нескольких ( мною опробовано три параллельно включенных датчика). Датчики могут быть установлены как рядом друг с другом ( для повышения надежности срабатывания), так и размещены в разных местах.

Изначально данная схема разрабатывалась для применения в мощном ламповом усилителе мощности КВ диапазона, отсюда большое количество блокировочных конденсаторов. При применении данной системы автоматического управления режимом работы вентилятора, скажем, в блоках питания, или в мощных усилителях НЧ блокировочные конденсаторы можно не устанавливать.

Данная схема интересна еще и тем, что датчики температуры могут быть как закреплены на радиаторах мощных транзисторов, диодов и иметь непосредственный тепловой контакт с ними,так и установлены на весу, в потоке теплого воздуха.

В качестве транзисторов VT1…VT3 можно применить любые кремниевые транзисторы в пластиковом корпусе и структуры n-p-n. Мною успешно испытаны транзисторы КТ503, КТ315, КТ3102, S9013, 2N3904. Подстроечный резистор R2 служит для установки минимальных оборотов вентилятора.

При настройке данной системы автоматического управления режимом работы вентилятора подстроечным резистором R2 устанавливают минимальные обороты вентилятора. Затем, нагревая датчик, или датчики, каким-либо источником тепла убеждаются в работоспособности системы и возможность срабатывания её от разных датчиков независимо.

Данная схема достаточно чувствительна-можно настроить её на срабатывание даже от нагевания датчика температуры рукой. Важное замечание. Схема измеряет не абсолютную температуру, а разность температур между переходами транзистора VT1 и датчиков VT2 и VT3. Поэтому плата устройства должна быть размещена в месте, исключающем дополнительный нагрев. Интегральный стабилизатор должен быть снабжен небольшим радиатором.

Система автоматического управления вентилятором №2.

Здесь описано аналогичное устройство, но имеющее некоторые особенности.

Дело вот в чем. Часто бывают случаи, когда система автоматического управления режимом работы вентилятора установлена в изделии, где имеется всего лишь одно питающее напряжение -12В, но и вентилятор рассчитан на работу от напряжения 12 В.

Для достижения максимальных оборотов вентилятора необходимо подать на него полное напряжение,или, другими словами, регулирующий элемент системы автоматического управления режимом работы вентилятора должен иметь практически близкое к нулю падение напряжения на нем. И в этом смысле схема, описание которой изложено выше, не подходит.

В этом случае применимо другое устройство, схема которого представлена ниже:

Читайте также:
Переделка реле на два взмаха дворников Лада Приора

Система автоматического управления вентилятором

Регулирующим элементом служит полевой транзистор с очень низким сопротивлением канала в открытом состоянии. Мною использован транзистор типа PHD55N03.

Он имеет следующие характеристики: максимальное напряжение сток-исток -25 В, максимальный ток стока- 55 А, сопротивлением канала в открытом состоянии -0,14 мОм.

Подобные транзисторы применяются на материнских платах и платах видеокарт. Я добыл этот транзистор на старой материнской плате:

Цоколевка этого транзистора:

Именно очень низкое сопротивление канала в открытом состоянии и позволяет приложить к вентилятору практически полное напряжение питания.

В этой схеме датчиком температуры служит терморезистор R1 номиналом 10 кОм. Терморезистор должен быть с отрицательным температурным коэффициентом сопротивления ( типа NTC).

Номинал терморезистора R1 может быть от 10 до 100 кОм, соответственно нужно изменить и номинал подстроечного резистора R2. Так, для терморезистора номиналом 100 кОм, сопротивление подстроечного резистора R2 должно быть 51 или 68 кОм. Подстроечным резистором R2 в данной схеме устанавливается порог срабатывания схемы.

Данная схема работает по принципу термоуправляемого реле: вентилятор включен/выключен в зависимости от температуры датчика.

Конструктивно, терморезистор R1 размещается на радиаторе транзисторов, которые обдувает вентилятор. Подстроечным резистором R2 при настройке схемы добиваются старта вентилятора при пороговой (начальной) температуре.

В качестве VT1 подойдет любой полевой транзистор с напряжением стока выше 20 В и сопротивлением канала в открытом состоянии менее 0,5 Ома.

Если напряжение питания не стабилизировано, то порог срабатывания схемы будет плавать, со всеми вытекающими последствиями. В этом случае полезно будет запитать терморезистор от стабильного источника питания, например -78L09.

Система автоматического управления вентилятором

Ниже приведен модернизированный вариант этой схемы. В данной схеме предусмотрена возможность независимой регулировки как минимальных оборотов при нормальной температуре, так и температуру, с которой обороты вентилятора начинают увеличиваться.

Здесь цепь R5, R6,VD2 позволяет установить минимальные обороты вентилятора при нормальной ( начальной) температуре при помощи подстроечного резистора R5. А резистором R7 устанавливают температуру, с которой вентилятор переходит на повышенные обороты.

Как и в предыдущих схемах, блокировочные конденсаторы необходимы при эксплуатации устройства в условиях воздействия мощных высокочастотных наводок-например ламповый усилитель мощности КВ диапазона. В других случаях в их установке нет необходимости.

Терморезисторов-датчиков температуры может быть несколько и установленных в разных местах. Вентиляторов тоже может быть несколько. В этом случае возможно ( но необязательно) будет необходимым предусмотреть небольшой радиатор для регулирующего транзистора.

Система автоматического управления вентилятором

Вид собранной платы системы автоматического управления обдувом, управляющий транзистор установлен со стороны печатных проводников:

Печатная плата, вид со стороны проводящих дорожек:

Все три схемы, приведенные в этой статье мною опробованы и продемонстрировали надежную и стабильную работу.

Обновление от 13.01.2020

Изготовил еще два варианта подобных регуляторов. Без использования терморезисторов.

Статья с подробным описанием здесь.

Дополнение от 19.02.2020.

Проделал лабораторную работу с целью определения возможности работы термоуправляемого регулятора, собранного по схеме №2 (см. текст статьи), от напряжения +27 В вместо штатных +12 В.

Делать эту работу пришлось, так как у некоторых коллег что-то там не получается и работает наоборот, и вовсе не так…

Схему собрал упрощенную-всего три детали. В качестве регулирующего транзистора применил IRF630.

Схема получилась такая:

В качестве нагрузки использован 27-ми вольтовый электродвигатель ДП25-1,6-3-27.

Всё заработало сразу, и как положено-при нагреве терморезистора двигатель начинает вращаться, при охлаждении останавливается. Порог срабатывания устанавливается подстроечным резистором 10 кОм. Причем, можно выставить так, что схема будет срабатывать даже от нагрева терморезистора дыханием.

Доработка пуска и работы вентилятора радиатора ВАЗ 2110

24 Августа 2011 | Автор: Ник | Просмотров: 100110 |

Так как Вентилятор Системы Охлаждения Двигателя (ВСОД) на ВАЗ 2110 имеет только одну скорость работы, то многим не нравится скачкообразное поведение стрелки ОЖ на приборной панели. Да и резкое включение вентилятора радиатора хочется как то сгладить :) Решение вопроса есть и даже не одно !

  1. Наличие эффекта “термокачки” (температура в жаркий период времени постоянно колеблется от точки включения вентилятора радиатора (карлсона) до точки его выключения).
  2. Ударные электрические (токовые) нагрузки на бортовую сеть.

Истории наших читателей

“Гребаный таз. “

Всем привет! Меня зовут Михаил, сейчас расскажу историю о том, как мне удалось обменять двенашку на камри 2010г. Все началось с того, что меня стали дико раздражать поломки двенашки, вроде ничего серьезного не ломалось, но по мелочи, блин, столько всего, что реально начинало бесить. Тут и зародилась идея о том, что пора менять машину на иномарку. Выбор пал на таёту камри десятых годов.

Читайте также:
Самодельный простой турботаймер

Да, морально то я созрел, а вот финансово никак не мог потянуть. Сразу скажу, что я против кредитов и брать машину, тем более не новую, в кредит это неразумно. Зарплата у меня 24к в месяц, так что насобирать 600-700 тысяч для меня практически нереально. Начал искать различные способы заработка в интернете. Вы не представляете сколько там развода, чего только не пробовал: и ставки на спорт, и сетевой маркетинг, и даже казино вулкан, в котором удачно проиграл около 10 тысяч(( Единственным направлением, в котором мне, казалось, можно заработать – это торговля валютой на бирже, это называют форексом. Но когда начал вникать, понял что это оочень сложно для меня. Продолжил копать дальше и наткнулся на бинарные опционы. Суть та же, что на форексе, но разобраться намного проще. Начал читать форумы, изучать трейдерские стратегии. Попробовал на демо счете, потом завел реальный счет. Если честно начать зарабатывать удалось не сразу, пока понял всю механику опционов, слил около 3000 рублей, но как оказалось это был драгоценный опыт. Сейчас зарабатываю 5-7 тыс. рублей в день. Машину удалось купить спустя пол года, но как по мне это неплохой результат, да и дело не в машине, у меня изменилась жизнь, с работы естественно уволился, появилось больше свободного времени на себя и семью. Будете смеяться, но работаю прямо на телефоне)) Если ты хочешь изменить свою жизнь как я, то вот что советую сделать прямо сейчас:
1. Зарегистрируйтесь на сайте
2. Потренируйтесь на Демо-счете (это бесплатно).
3. Как только что-то будет получаться на Демо-счете, пополняйте РЕАЛЬНЫЙ СЧЕТ и вперед, к НАСТОЯЩИМ ДЕНЬГАМ!
Также советую скачать приложение на телефон, с телефона работать намного удобнее. Скачать тут.

Многим не нравится, что в жаркую погоду при не быстрой езде температура охлаждающей жидкости двигателя по приборной панели поднимается в плотную к красной зоне, после чего запускается вентилятор системы охлаждения и стрелка падает вниз. И так туда – сюда. Вообще для ВАЗ 2110 такое скачкообразное поведение стрелки считается нормой.
Конечно, тут возможно врет приборная панель и по Бортовому Компьютеру показания совсем другие. Но все же эффект неприятный и всегда настораживает. Хочется как то сделать контроль температуры плавным, а не скачками. Что бы температура поддерживалась все время на одном уровне благодаря разной скорости вращения карлсона или за счет более раннего включения вентилятора.

Дебаты по этому вопросы ведутся давно и решение проблемы есть !

Вариант 1: Можно попробовать снизить скорость вращения карлсона и запускать электродвигатель плавно, и на более низкой температуре охлаждающей жидкости (запускать раньше, чем обычно). См. фотоотчет “Плавный пуск вентилятора охлаждающей жидкости.”, который сделали автолюбители из семейства “Самары”. Но принцип остается такой же и для ВАЗ 2110. Данный варинт довольно сложный для человека, который не сильно разбирается в электрике автомобиля. Да и выглядит вся конструкция, как то не очень надежно из-за такого количества проводов.
Вариант 2: Метод попроще – это сделать принудительное включение карлсона от кнопки. См. фотоотчет “Включение вентилятора радиатора (карлсона) от кнопки”. После данной доработки у вас в салоне появляется кнопка (можете на ней нарисовать карслона :) ). Летом в пробках Вы нажимаете кнопку и у Вас плавно включается карлсон, который работает пока нажата кнопка на малых оборотах (этой скорости достаточно, что бы температура ОЖ не поднималась выше 90-95 градусов). Но если вдруг она поднимется выше, то включается штатная 2ая максимальная скорость.
Вариант 3: Третий подход, на мой взгляд и по мнению многих автолюбителей является пусть не самый дешевый, но самый правильный и надежный это установка Блока плавного Управления Электровентилятором Радиатора Автомобиля (БУ ЭВСО) – “СИЛИЧЪ-БОРЕЙ”.
Вкратце – это объединение достоинств и исключение недостатков традиционных систем охлаждения двигателя путем внедрения принципиально нового алгоритма плавного управления скоростью вращения электровентилятора для стабилизации температуры двигателя автомобиля.
Основа алгоритма “Силичъ” – изменение скорости вращения вентилятора в зависимости от температуры двигателя. (как у вискомуфты). Цена такого устройства около 1200р.
Вариант 4: Как вариант можно рассмотреть и Регулятор пуска вентилятора РПВ автомобилей LADA. Этот переходник вставляется в разрыв цепи питания вентилятора и производит плавное включение вентилятора системы охлаждения двигателя, что значительно повышает его срок службы.
Читайте также:
Дорабатываем реле стеклоочистителя

Плавный пуск вентилятора охлаждающей жидкости. Фотоотчет.

  1. Производительность вентилятора избыточна. Температура радиатора быстро снижается, что приводит к частым “старт-стоп” электродвигателя вентилятора.
  2. Температура срабатывания датчика ОЖ слишком высока. Стрелка индикатора приближается к красной зоне, двигатель работает неустойчиво, может “закипеть”.

Тепловой режим работы двигателя поддерживается термостатом и электровентилятором радиатора. Последний включается датчиком, ввернутым в левый бачок радиатора (на карбюраторном двигателе ВАЗ 2110) или через реле по сигналу ЭБУ (на инжекторных двигателях ВАЗ 2111, -2112).

Если старый радиатор не подлежит больше ремонту и Вы его решили заменить, тогда хорошая возможность выбрать и купить новый. Например, радиатор Лузар приспособлен, как для инжекторных, так и для карбюраторных моторов (есть возможность установить датчик температуры охлаждающей жидкости (ДТОЖ) от карбюратора).

Если установить дополнительный датчик охлаждающей жидкости (ДТОЖ) в радиатор/патрубок, тогда получится так: При достижении температуры охлаждающей жидкости до уровня датчика, вентилятор включается в пол силы. А если температура будет расти и поднимется до уровня срабатывания по ЭБУ, то он начнет работать в полную силу.

Альтернативные схемы подключения, но смысл один и тот же:

Результаты и выводы: На трассе и в пробках стрелка указателя температуры ОЖ стояла в нормальном режиме как привязанная. Чтобы услышать пуск электродвигателя вентилятора нужно прислушиваться. На перевале было конечно тяжело, но температура ОЖ не превышала ту, которая ранее была при простое в “пробке”.

Включение вентилятора радиатора (карлсона) от кнопки.

После данной доработки у вас в салоне появляется кнопка (можете на ней нарисовать карслона :) ). Летом в пробках Вы нажимаете кнопку и у Вас плавно включается карлсон, который работает пока нажата кнопка на малых оборотах (этой скорости достаточно, что бы температура ОЖ не поднималась выше 90-95 градусов). Но если вдруг она поднимется выше, то включается штатная 2ая максимальная скорость.

  1. Температура ОЖ уже более стабильна и не прыгает как раньше
  2. Нет резких скачков напряжения от включения вентилятора.
  1. Реле 4-х контактное
  2. Сопротивление отопителя ВАЗ 2110
  3. Провода
  4. Кнопка (поставил со снежинкой)
  5. Клеммы мама + папа (много штук)

Снимаем клемму с АКБ.
Залезаем под торпеду с пассажирской стороны в ногах откручиваем крышку и видим 3 реле. Нам нужно реле вентилятора.

Ищем тонкий розово-черный провод, идущий от главного реле (контакт 85*) и толстый силовой бело-черный провод (контакт 87) и подцепляем наше реле к ним.
* по книжке на разных моделях ВАЗ 10-го семейства розово-черный провод главного реле может приходить как на контакт 86, так и на 85. Ориентируемся по цвету проводов. Черно-пурпурный (черно-красный) тонкий провод, идущий от контроллера, мы не трогаем.

Далее устанавливаем сопротивление отопителя. В магазинах продаются разные сопротивления, желательно в изоляции. (например, для Нивы или десятки), которые, судя по всему, можно без всяких последствий размещать тут же – в салоне под торпедой, рядом с реле. Именно такие я и советую приобретать, если не хотите испытать дополнительные трудности при установке.

Советую взять сопротивление отопителя 2110

Возвращаемся к блоку реле:
Контакт 1 сопротивления – к контакту 30
Контакт 3 – на массу автомобиля
Кнопку – к контакту 86 нашего реле.
Второй контакт кнопки – на “массу”.
Устанавливаем штатные реле на место. Наше дополнительное реле привинчиваем за ухо к кронштейну контроллера.

Сопротивление можно закрепить там же рядом с релюхами, греется оно не сильно, но чтобы сопротивление не соприкасалось с проводкой нужно обязательно поместить его в металлический корпус.

Надеваем клемму АКБ и включаем зажигание.
Проверяем работоспособность схемы.

Почему гасящий резистор греется ?
Потому что на нём выделяется довольно много мощности. В абсолютных цифрах это выглядит примерно так:
Макс ток, который потребляет вентилятор – 15,3А (источник); предположим что это пусковой ток, а рабочий к примеру 10А. Включив последовательно ему резистор отопителя ВАЗ 2110 с сопротивлением 0,23 Ом (источник) мы ограничиваем ток и соответственно обороты. Но при этом через резистор будет протекать ток ~8,57А, т.е. на резисторе будет падать 1,97 В. Соответственно 8,57А умножаем на 1,97В – получаем 16,88 Вт, что немало. А если потребляемый вентилятором ток в установившемся режиме больше десяти ампер, то и мощность, выделяемая на добавочном резисторе соответственно будет большей.

Читайте также:
Качественное зарядное устройство для АКБ

Заключение

Сказать, что я доволен первым результатом – ничего не сказать. Я просто тихо тащусь. Вентилятор на малой скорости работает практически бесшумно, звук его сопоставим со звуком бензонасоса. На полной скорости он теперь либо совсем не включается, либо включается очень редко Включение происходит плавно, без ударной нагрузки на генератор и просадки напряжения.
При +30 температура ОЖ плавала в интервале 93-95 и не поднималась выше 96.

Если температурный режим двигателя выходит за нормальные показатели, тогда следует провести диагностику системы охлаждения двигателя.

Управление включением вентилятора для поддержания оптимальной температуры радиатора охлаждения. Часть 1

В статье представлены схемы, разводка плат и фотографии недорогих миниатюрных устройств управления включением-выключением вентиляторов охлаждения радиаторов силовых элементов мощных усилителей и источников питания (ИП) в зависимости от температуры их нагрева. Применение современной элементной базы и простота схем устройств позволили на порядок снизить их стоимость по сравнению с подобными устройствами промышленного изготовления, а также существенно уменьшить производимый ими шум.

Введение

В процессе эксплуатации усилителя [1], работающего совместно с ИП [2], было выявлено, что при их работе в режиме максимальной мощности или близком к нему радиаторы охлаждения как самого усилителя, так и ИП нагреваются до неприемлемо высокой температуры (до 50 °C и выше), тогда как при малых и средних мощностях (а это львиная доля всех режимов работы) температура радиаторов находится на приемлемом уровне, то есть конвективный способ охлаждения радиаторов в таких режимах вполне себя оправдывает. Снизить температуру радиаторов, как известно, можно двумя способами: либо увеличив площадь поверхности радиаторов, либо применив принудительное охлаждение с помощью вентиляторов. Первый способ, на взгляд автора, излишне затратен, так как стоимость радиаторов напрямую зависит от их размера и для достаточно габаритных радиаторов может достигать единиц тысяч рублей. Охлаждение радиаторов вентиляторами (второй способ) связан с приобретением промышленных дорогостоящих устройств охлаждения на основе вентиляторов и датчиков температуры, стоимость которых еще выше: например, подобные устройства на основе двух вентиляторов и датчика температуры, найденные автором в Интернете, продаются по цене от 2 тысяч рублей и выше. Кроме того, шум, создаваемый подобными устройствами, неприемлемо высок (до 40 дБ и более). В то же время существуют вентиляторы, применяемые для охлаждения видеокарт. Это наиболее современные, малогабаритные и малошумные (до 20 дБ) вентиляторы, стоимость которых не превышает 100 руб. Но устанавливать подобные вентиляторы на радиаторы охлаждения и включать их на постоянную работу также неприемлемо, поскольку, как отмечалось выше, уже при средних уровнях мощности принудительно охлаждать радиаторы не требуется, и даже такой малый уровень шума (20 дБ), особенно при малых уровнях громкости (мощности), может создать дискомфортное восприятие музыкального сигнала.

У автора возникла идея: а нельзя ли сконструировать электронное устройство охлаждения на базе вентиляторов и датчика температуры, которое бы включало вентиляторы только при достаточно высоком нагреве радиаторов, а при слабом нагреве не включало их вообще. Анализ схем подобных устройств, найденных автором в Интернете, показал, что таких схем масса: начиная от самых простых, сконструированных на дискретных компонентах (например, на базе термистора и полевого транзистора), и кончая достаточно сложными с применением биполярных транзисторов и ОУ. Однако ни одна из подобных схем автора не устроила, поскольку, на его взгляд, все они либо достаточно сложны, либо сконструированы с применением устаревшей элементной базы, из-за чего имеют достаточно крупные габариты.

В связи с вышеизложенным, автором была разработана собственная схема такого устройства, которое показало надежную работу, имело достаточно миниатюрные габариты, а стоимость входящих в него электронных компонентов не превысила 100 руб.

Описание подобного устройства и является предметом настоящей статьи.

Таким образом, дальнейшее изложение будет построено следующим образом. Вначале будут приведены принципиальные схемы устройств (их два), затем – разводка их плат и фотографии. Далее будет рассмотрен способ их настройки (градуировка) и, наконец, приведены результаты их работы.

Принципиальные схемы устройств

Для того чтобы понять принципиальную схему устройства, предназначенного для включения-выключения вентилятора в зависимости от температуры радиатора, прежде всего, необходимо уяснить, что представляет собой датчик температуры, используемый в схеме. Таким датчиком является термистор (терморезистор, термометр сопротивления и т.п.). Это полупроводниковый прибор, сопротивление которого зависит от температуры. Причем, с увеличением температуры сопротивление термистора уменьшается, или, другими словами, он имеет отрицательный температурный коэффициент (Negative Temperature Coefficient – NTC). Он так и называется: NTC-термистор, или просто – NTC. Зависимость сопротивления NTC от температуры нелинейна, поэтому, чтобы существенно линеаризовать эту зависимость, применяют классический мост Уитстона совместно с ОУ в дифференциальном включении (Рисунок 1а, [3]). Баланс такого моста наступает при условии R2/Rt = R1/R3, где Rt – как раз и есть сопротивление термистора. При равенстве R1 = R3, очевидно, что порог переключения в схеме Рисунок 1а будет составлять U/2, где U – напряжение питания. Другими словами, если напряжение на инвертирующем входе ОУ ниже порога U/2, то выходное напряжение будет иметь высокий потенциал, равный напряжению питания U (при условии, что ОУ обладает свойством Rail-To-Rail, означающим, что он способен воспроизвести выходной сигнал в диапазоне напряжений вплоть до напряжений питания и «земли»). Если же это входное напряжение выше порога, то выходное напряжение будет иметь нулевой («земляной») потенциал. Однако если входное напряжение находится близко к порогу, то это приведет к частым переключениям. Для того чтобы избавиться от таких частых переключений, необходимо ввести в схему некоторый гистерезис. Подобным свойством, как известно, обладает триггер Шмитта, сконструированный (в том числе) на ОУ (Рисунок 1б, [3]). Это свойство триггер Шмитта приобретает за счет введения положительной обратной связи с помощью резистора R3. Размах напряжения гистерезиса в этой схеме составляет [3]:

Читайте также:
Не забудете выключить фары

Если теперь объединить схемы Рисунок 1а и Рисунок 1б или, другими словами, ввести положительную обратную связь RОС в схему 1а, то получим схему уже с гистерезисом (Рисунок 1в), которая и является основой для принципиальной схемы устройства. Из уравнения (1) следует, что для схемы Рисунок 1в при фиксированных значениях R1 и R3 и при их равенстве R1=R3=RГ размах напряжения гистерезиса UГИСТ будет определяться (при заданном U) отношением RГ/2RОС: чем оно меньше, тем уже гистерезис.

Рисунок 1. Использование моста Уитстона (а) и триггера Шмитта (б) в структурной схеме
измерения температуры (в).

Здесь необходимо отметить, что все предыдущие рассуждения касались только электрических параметров схем (в основном, напряжений), а как обстоит дело, когда имеется реальная температура, и как при этом условии будет работать схема? Для этого необходимо произвести градуировку схемы (см. далее), или, другими словами, подобрать номинал резистора R2 (Рисунок 1в) таким образом, чтобы при превышении температурой верхнего порога вентиляторы включались, а при температуре ниже определенного порога – выключались.

И последнее, наиболее важное свойство схемы Рисунок 1в, которое следует особо подчеркнуть. Как видно из этой схемы, точка соединения резистора R2 и термистора Rt подключена к инвертирующему входу ОУ. Это означает, что при повышении напряжения в этой точке и пересечения им (напряжением) верхнего порога выходное напряжение ОУ скачком переключается в низкий уровень (потенциал «земли»), а при снижении напряжения и пересечения им нижнего порога, выходное напряжение скачком переключается в высокий уровень (напряжение питания). Кроме того, поскольку термистор подключен к нижней части плеча R2Rt и имеет отрицательный температурный коэффициент, при увеличении температуры сопротивление Rt начинает уменьшаться, и в связи с этим напряжение в точке соединения R2 и Rt (то есть на инвертирующем входе ОУ) начинает снижаться, а при уменьшении температуры – повышаться. Из этого следует, что верхний порог температуры соответствует нижнему порогу напряжения, а нижний порог температуры – верхнему порогу напряжения на инвертирующем входе ОУ.

Вышеизложенное означает, что при повышении температуры и пересечении верхнего порога температуры выходное напряжение ОУ скачком переключается в высокий уровень (напряжение питания), а при снижении температуры и пересечении нижнего порога температуры, выходное напряжение ОУ скачком переключается в низкий уровень (потенциал «земли»). Это основное свойство схемы и будет использовано в дальнейшем при объяснении работы уже принципиальных схем.

Теперь, после таких подробных объяснений, на взгляд автора, несложно понять и принципиальную схему устройства (Рисунок 2). Как видно из этой схемы, в качестве ОУ использована микросхема одноканального ОУ OPA170 (DA2). Этот относительно современный Rail-To-Rail ОУ выпускается (в том числе) в миниатюрном корпусе SOT23-5 размером 3×3 мм и имеет максимальное напряжение питания 36 В. Вместо ОУ OPA170 можно использовать ОУ NCS20071, являющийся почти полным аналогом OPA170, но несколько дешевле его. Можно также использовать еще более дешевый ОУ ТS321 (стоимостью около 20 руб. с максимальным напряжением питания 30 В) или LM321 (30 руб., 30 В), но у него другое расположение выводов, так что потребуется иная разводка схемы (приведена в дополнительных материалах к статье).

Читайте также:
Виды широко-импульсных схем.
Рисунок 2. Принципиальная схема включения вентилятора с помощью ОУ и полевого транзистора.

Схема включения ОУ (Рисунок 2), как можно заметить, в точности повторяет схему Рисунок 1в. Выход ОУ через токоограничивающий резистор R5 подключен к затвору транзистора VT1, выпускаемого в полностью изолированном корпусе TO-220F (50N06L-TF3-T). Исток транзистора заземлен, а нагрузка – вентиляторы и мигающий светодиод со своим токоограничивающим резистором R6 – подключена между стоком транзистора и питанием (+12 В). Вентиляторы подключены через двухштырьковый цанговый разъем PSLM-2 с расстоянием между штырьками 2.54 мм (XFan). Через такие же разъемы подключены: светодиод (Xled), термистор (XNts) и входное напряжение питания +14 В (X+14). Сама же схема питается от стабилизированного напряжения +12 В, получаемого с помощью стабилизатора LM2940CT-12 (DA1) в корпусе TO-220 с низким падением напряжения (Low Drop Out – LDO), составляющим не более 0.5 В (типовое значение) и максимальным током 1 А. Использование стандартного стабилизатора (например, 7812 или 78M12) исключено, поскольку его падение напряжения составляет не менее 2 В (без нагрузки), поэтому при входном напряжении +14 В и дополнительной нагрузке в 300 – 400 мА (такой ток потребляют вентиляторы) этот стабилизатор не обеспечит стабилизированное напряжение +12 В.

Ко всем четырем разъемам подключаются двухпроводные кабели, которые одним концом, соответственно, соединены: с напряжением питания +14 В (Рисунок 3а), термистором (Рисунок 3б), светодиодом (Рисунок 3в) и вентиляторами (Рисунок 3г), а на вторых их концах расположены цанговые двухконтактные гнезда SIP2, являющиеся ответными к цанговым штырям PSLM-2, расположенным на плате устройства (Рисунок 2).

Рисунок 3. Кабели подключения питания (а), термистора (б), светодиода (в) и вентиляторов (г).

Кабель питания состоит из двух проводов МГТФ-0.3, кабели для термистора и светодиода – из двух проводов МГТФ-0.1, а кабели для вентиляторов – из тех же проводов, с которыми поставляются вентиляторы. Здесь необходимо отметить, что из вентилятора выходит кабель из трех проводов, который на конце имеет 3-штырьковый разъем – гнездо HU-03 (Рисунок 4). Эти три провода маркируются разными цветами: черный («земля»), красный (+12 В) и желтый – датчик числа оборотов вентилятора, предназначенный для его подключения к тахометру (Т). Этот провод не используется, а потому удаляется. Он может быть либо просто «откушен» кусачками в том месте, где он отходит от вентилятора, либо, что сделано автором, вообще отпаян от контакта, расположенного под липкой пленкой на корпусе вентилятора (ее край необходимо отлепить и после отпайки провода прилепить на место).

Рисунок 4. Контакты вентилятора.

Светодиод целесообразно установить на лицевой поверхности корпуса усилителя или ИП в зависимости от того, где он используется, термистор прикрепляется к задней поверхности радиатора охлаждения (об этом подробно написано далее), вентиляторы укрепляются на радиаторах охлаждения (см. далее), а кабель питания +14 В припаивается к проводам с напряжением питания усилителя или ИП.

Усовершенствование датчика включения вентилятора

Усовершенствование датчика включения вентилятора

Состояние двигателя автомобиля напрямую зависит от эффективной работы вентилятора охлаждения. Особенно это актуально для автомобилей марки ВАЗ-2109 в летний период. В больших городах улицы перегружены транспортом, и водитель вынужден резко изменять режимы работы двигателя при движении, а это дает дополнительную нагрузку на внутренние системы машины. При этом остановиться для охлаждения двигателя нет возможности.

У модели ВАЗ-2109 большая часть поломок системы охлаждения приходится на датчик включения вентилятора. Сама деталь не очень надежная и нет гарантии, что новый образец будет работать исправно. Специалисты это связывают с большим количеством контрафактной продукции на рынке запчастей.

Поэтому информация об устройстве, положении и замене датчика включения вентилятора пригодится каждому владельцу «девятки».

Конструкция датчика очень проста. Его работа основана на деформации измерительного элемента (биметаллической пластины) под воздействием высоких температур. При этом замыкаются необходимые контакты, и идет сигнал на вентилятор.

Разные типы датчика имеют не одинаковую температуру срабатывания. Некоторые современные модели могут выбирать даже скорость вращения вентилятора, они оснащены двумя дополнительными контактами.

Читайте также:
Тайм-аут или доводим турботаймер

Узнать, что вентилятор работает не адекватно, можно довольно просто. При высокой температуре охлаждающей жидкости он не запускается, а начинает работать сразу при включении холодного двигателя. Находится датчик на нижней части радиатора. Его легко идентифицировать по двум отходящим проводам.

Обычно сразу проводят замену детали и тем самым решают проблему. Однако чтобы закрепить результат и продлить срок службы датчика, можно выполнить ряд не хитрых манипуляций по поиску истинных причин поломки:

  • Когда вентилятор не работает по штатной схеме, то специалисты рекомендуют перемкнуть провода датчика между собой. Такой датчик с дефектом, если его корпус нагрелся, а вентилятор так и не включился. Если поверхность устройства теплая, но при этом повысилась температура радиатора, то необходима дополнительная проверка уровня охлаждающей жидкости и состояния термостата;
  • При замкнутых проводах и отсутствующем звуке запуска реле вентилятор может не включиться. В таком случае дефект нужно искать на 4-м предохранителя, а также проверять исправность самого реле.
  • Если вентилятор не включается при замкнутых проводах, а реле срабатывает в штатном режиме, то, скорее всего, произошла поломка 8-го предохранителя.
  • На холодном двигателей происходит запуск вентилятора. Такой дефект можно устранить путем отсоединения от датчика одного из проводов. При остановке вентилятора нужно осмотреть контакты датчика, возможно, они залипли. Если остановка вентилятора не произошла, то причину стоит искать в неисправности управляющего реле.

Усовершенствование датчика включения вентилятора

В случае, если датчик включения вентилятора требует замены, то под рукой достаточно иметь только ключ на «30». Работы состоят из четырех этапов:

Усовершенствование датчика включения вентилятора

  1. Для начала нужно отключить зажигание;
  2. Охлаждающую жидкость сливают из бачка;
  3. Отсоединяют контакты от колодки устройства;
  4. Гаечным ключом устройство выворачивается из посадочного гнезда. При этом нужно прилагать не большое усилие.

Усовершенствование датчика включения вентилятора

Монтаж датчика после замены осуществляется в обратном порядке. Мастера рекомендуют перед установкой проверить работу устройства на холодном двигателе. При этом не придется сливать из бачка охлаждающую жидкость. Потери тосола будут не большими, если замену датчика выполнить быстро.

Подключение электровентилятора через реле: особенности и схемы

Настало лето, жаркая погода. Многие едут на дачу, путешествуют на машинах, часами стоя в пробках. Из-за жары электровентилятор легко может сгореть перегревшись. В такие дни данное устройство просто необходимо, чтобы радиатор с двигателем обдувались. Включается оно только в тот момент, когда происходит блокировка муфты. Но чтобы не ждать, когда это время наступит, можно сделать кнопку с принудительным включением, а как подключить вентилятор охлаждения в своей машине — узнаете ниже!

Подключение электровентилятора через реле: особенности и схемы

Схема подключения вентилятора радиатора

Датчик включения двигателя ставится на радиатор, имеющий у себя внизу небольшую пластину. От температуры она начинает нагреваться, двигая красный стержень, соединяющий контакты вместе. Один из контактов всегда соединяется с кузовом, уже через него скрепляясь с минусовой клеммой аккумулятора. Минус подается на электромагнит реле.

Подключение электровентилятора через реле: особенности и схемы

На другой контакт идет плюс при включении зажигания. Электромагнит притягивает к себе железку, соединяющую вместе контакты (30, 87) и на электровентилятор через предохранитель от генератора идет плюс, что заставляет всю конструкцию работать.

Подключение электровентилятора через реле: особенности и схемы

Электросхема вентилятора охлаждения происходит по следующему описанию:

  1. Напряжение подается на электрический двигатель вентилятора охлаждения.
  2. Далее, данный двигатель подключается к датчику включения этого устройства и коммутируется на массу.
  3. При достижении температуры срабатывания, датчик замыкается — через цепь течет ток.
  4. Вентилятор начинает работать!

Подключение электровентилятора через реле: особенности и схемы

Когда температура снижается у двигателя — датчик, соответственно, размыкается, ток прекращает течь, электровентилятор останавливается: происходит отключение системы.

Обратите внимание, что схема подключения вентилятора охлаждения через реле отличается тем, что весь заряд идет на массу. При его замыкании ток течет через первичную обмотку, контакты 87, 30 замыкаются — I начинает течь в цепи электродвигателя. При понижении температуры происходит обратный процесс.

Советуем изучить – Измерение тока и напряжения при эксплуатации электрооборудования на промышленных предприятиях

Подключение электровентилятора через реле: особенности и схемы

Первичная обмотка подключается к плюсу 12 В на катушку зажигания. Провод тянется к 86 выводу реле. С 85 тянется на датчик вентилятора. С датчика включения провод приходится на массу. Получается минимум проводов, а реле находится в непосредственной близости от датчика включения.

Подключение электровентилятора через реле: особенности и схемы

Варианты схем

Схема включения вентилятора охлаждения с помощью реле зависит только от правильного соединения плюса с минусом, соответственно, проводов!

Читайте также:
Разделение контрольной лампы поворотов 2106

Как работает реле

Электровентилятор со временем начинает потреблять большое количество электроэнергии, в отличие от нового. Пусковые токи могут просто испортить выключатель температуры.

Подключение электровентилятора через реле: особенности и схемы

Основная задача реле — коммутация высоко токовых цепей с помощью низко токового управляющего сигнала.

Типичное реле представляет собой катушку на сердечнике, являющуюся электромагнитом и группу контактов, замыкающихся или размыкающихся между собой. Катушка срабатывает при очень низких значениях тока в несколько миллиампер. Пропускаемые контакты дают пройти через себя большие токи.

Подключение электровентилятора через реле: особенности и схемы

Обозначается реле на схеме буквой К с числовым индексом, показывая его порядковый номер и при помощи 2-х блоков: первый — электромагнит, второй — группа контактов.

Подключение электровентилятора через реле: особенности и схемы

Характеризуется оно следующими параметрами: напряжение, ток, при которых срабатывает реле, а также U, ток комутации: какую величину I он сможет пропускать по своим контактам. Превышать U нельзя — может возникнуть напряжение контактов, последующее их прилипание друг к другу.

Подключение электровентилятора через реле: особенности и схемы

Подключение вентилятора охлаждения через реле

Имеется электровентилятор, от него отходят 2 провода. Один ведет к термодатчику, другой — к реле. Дополнительно можно подключить лампочку контроля работы Карлсона через 87 контакт для лучшей визуализации, диагностики.

Подключение электровентилятора через реле: особенности и схемы

На крышке вы увидите обычную схему 4-х контактного реле, с помощью которого можно понять какие контакты являются электромагнитами:

Советуем изучить – Конденсаторные установки распределительных подстанций – назначение, особенности эксплуатации

Подключение электровентилятора через реле: особенности и схемы

По схеме подключения электровентилятора через реле 30 и 85 пускают на аккумулятор. На датчик вентилятора идут только минусовые провода. Если вы кинете к нему плюсовой — он у вас постоянно будет перегорать. На 2 минусовых провода подключается кнопка, чтобы замыкать цепь.

При разрыве тока на реле электровентилятора возникает искра, поэтому стали делать модели со встроенным диодом.

Подключение электровентилятора через реле: особенности и схемы

87 идет на фишку вентилятора, 80 — на датчик охлаждения. Плюсовой провод подцепляете сразу к вентилятору, кидая на массу.

Подключение электровентилятора через реле: особенности и схемы

Совет: 2 провода, отходящих от вентилятора лучше всего спаять (скрутить, заизолировать). Это нужно для того, те не повредеились, т.к. здесь могут проходить большие нагрузки, сам разъем находится в моторном отсеке, где присутствует влага, контакты окисляться, поэтому лучше перестрахуйтесь!

Подключение электровентилятора через реле: особенности и схемы

Для отдельного использования реле используется кнопка, фиксирующаяся при включении, она будет давать минус на 86 контакт, замыкая его. Протягивается она на рулевую колонку через магнитолу (можно попробовать спицей), в итоге получается принудительное включение вентилятора. Синий провод идет на массу, коричневый — на управляющие контакты.

Подключение электровентилятора через реле: особенности и схемы

Причины неисправности вентилятора

Первое, что нужно проверить — уровень тосола в расширительном бочке. При недостаточном уровне его температура может не достигнуть нужной точки, при которой включается датчик. При полной исправленной цепи питания вентилятор включаться не будет.

Подключение электровентилятора через реле: особенности и схемы

Если не будет открываться термостат, в него не сможет попасть горячий тосол. Это является причиной, по которой вентилятор неисправно работает.

Проверить, генерирует ли термостат — просто! Нужно прогреть двигатель до рабочей температуры, пощупав нижнюю часть радиатора — они должны быть горячими.

Подключение электровентилятора через реле: особенности и схемы

Можно приступать к проверке самого вентилятора и цепей его питания:

  1. Снимите контакты с датчиков вентилятора.
  2. Присоедините их друг к другу — вентилятор должен включиться. Если так произойдет — все исправлено.
  3. Значит не включается вентилятор из-за датчика. Для проверки — нагрейте его до температуры включения (92 градуса) и посмотрите, замыкается ли цепь.
  4. Посмотрите его предохранители (располагается в монтажном блоке).
  5. Реле тоже нужно проверить: подключите его к аккумулятору по схеме, нарисованной на нем.
  6. Если вентилятор все равно не включается — проведите осмотр его самого: подключите напрямую к автомобильной батарее.
  7. Еще одна причина — сгорание дорожки монтажного блока. Когда она повреждается — появляется запах горелого.
  8. На инжекторном двигателе проверьте целостность цепи.

Подключение электровентилятора через реле: особенности и схемы

Бывает такое, что вентилятор работает постоянно. Связано это с:

  • термодатчиком;
  • сломанным блоком;
  • реле;
  • замыканием цепи.

Измеряем температуру включения вентилятора на ВАЗ-2110: инжектор и карбюратор

Кнопка принудительного включения вентилятора радиатора на ВАЗ-2110 на руле

Поддержание нормальной рабочей температуры двигателя очень важно для сохранения его работоспособности. Мультяшная стрелка на щитке приборов, понятное дело, показывает температуру совсем не точно и выдаёт, скорее, ориентировочные показатели. Система же электронного управления двигателем ВАЗ-2110 с любым инжекторным мотором использует совсем другие данные, более точные. Они и влияют на рабочую температуру и на периодичность включения вентилятора охлаждения.

Когда включается вентилятор радиатора на ВАЗ-2110

Чтобы толком разобраться в том, как изменить температуру включения вентилятора на ВАЗ-2110 инжектор, необходимо точно знать заводские расчётные параметры и сам принцип включения вентилятора.

Шкала температуры охлаждающей жидкости на приборной панели автомобиля ВАЗ-2110

В карбюраторных двигателях вентилятор включался примерно на 100 градусах.

Читайте также:
Простой пробник для автолюбителя

На карбюраторных моторах 2110 старого образца вентилятор включался при помощи термобиметаллического датчика. Он был установлен непосредственно в банке радиатора и настроен на определённую температуру. Поскольку нормальная рабочая температура антифриза 80-90 градусов , то и биметаллическая пластина замыкала контакты примерно при 100-105 градусах .

В инжекторных десятках вентилятор запускается совсем по-другому. Возле термостата установлены два датчика температуры — один с одним проводом, второй с двумя. Первый отвечает только за стрелку указателя температуры, поэтому и спрос с него небольшой. Второй датчик с двумя проводами — рабочий. Именно он подаёт импульс на электронный блок управления двигателем, а тот уже подаёт питание на сеть электродвигателя вентилятора.

Схема включения вентилятора на ВАЗ-2110

Особенности датчика температуры

Однако надо понимать, что датчик температуры — это обычный преобразователь тепловой энергии в электрический изменяемый импульс. А точнее, при изменении температуры антифриза, меняется сопротивление датчика примерно в таком режиме:

Температура антифриза, °С Сопротивление, Ом
100 123
80 215
60 667
40 1459
20 3520
9420
-20 28680
-40 100700

Теперь становится понятным принцип работы системы включения вентилятора — ЭБУ получает определённый электрический импульс, когда температура достигает 110 °С (133 Ом) , и подаёт питание на двигатель вентилятора.

Как только сопротивление элемента датчика поднимается до 187 Ом (что соответствует 97 °С), питание с вентилятора снимается, двигатель остывает.

Как изменить температуру?

Со временем появляется все больше и больше нареканий на работу системы включения вентилятора охлаждения. Самая важная конструктивная недоработка — отсутствие нескольких режимов работы вентилятора и резкий пуск его двигателя . И действительно, в летнюю жару вентилятору приходится работать в полную силу, и это понятно. Однако чаще всего вентилятор выдаёт избыточную производительность, что приводит к быстрому охлаждению и частым запускам.

Это приводит к перегрузке бортовой сети по току.

Кроме того, стартовый порог температуры слишком высок, поэтому двигатель часто перегревается . К сожалению, изменить параметры запуска вентилятора можно только перепрошив электронный блок управления или модернизировав систему включения электродвигателя. Перепрошивка ЭБУ проводится у грамотного специалиста, при этом есть возможность установить любую желаемую температуру включения и выключения вентилятора.

Основные способы

Принципиальная схема подключения датчика вентилятора от карбюраторного двигателя в ВАЗ-2110 с инжекторным мотором

Схема включения дополнительного датчика вентилятора.

С изменениями режимов работы двигателя вентилятора тоже есть несколько решений. Самое простое из них — установка дополнительного датчика включения от карбюраторных двигателей (на схеме выше). Он настроен на включение при температуре 97-100 °С , чего будет вполне достаточно. А чтобы вентилятор работал в таком режиме в половину мощности, в цепь устанавливают сопротивление от ВАЗовского отопителя.

Таким образом, у модернизированного вентилятора будет несколько преимуществ:

  1. Температура включения вентилятора ниже штатной.
  2. Два режима работы — ½ и полная мощность.
  3. Менее шумная работа вентилятора.
  4. Меньше стартовая нагрузка на бортовую сеть.
  5. Более гибкий температурный режим работы двигателя.
  6. Сохраняется штатный режим включения вентилятора.

Таким образом можно доработать систему управления электровентилятором радиатора охлаждения ВАЗ-2110. Стабильной всем температуры и добрых дорог!

Делаем дополнительный датчик для вкл. вентилятора

Сообщение japancar » 21 май 2009, 09:19

я сделал очень просто, нашел под капотом релюшку в блоке предохранителей , отвечающаю за включение обдува при включении кондиора, внизу вывел на разрыв проводочки и кнопку в салон.. все работает. езжу неделю – проблем пока не наблюдаеться.

Сообщения: 3045 Зарегистрирован: 25 июн 2007, 00:00 Награды: 1

Рейтинг: 9 661
Репутация: +11

Сообщение jakik » 21 май 2009, 09:24

Легко Термореле внизу основного радиатора, параллельно к контактам подцепляешь кнопку, и нет проблем. Единственное, что могу порекомендовать:

1. Не экономь на проводке. Провода должны быть нормальные, автомобильные, а не медные из телефонного кабеля. Соединения должны быть максимально грамотные, Изоляция – лучше чрезмерной, и желательно нормальной автомобильной изолентой, а не скотчем. Если нет опыта, лучше знакомого кого попросить, иначе подобные доработки проводки часто заканчиваются возгораниями.
2. Неплохо бы ещё параллельно моторчику вентилятора основного радиатора вывести какой-нибудь красивый светодиод через резистор на панель – будешь ещё и видеть, когда принудительное охлаждение включается. Опять таки актуален при этом первый пункт.

Сообщения: 2027 Зарегистрирован: 22 июн 2007, 00:00 Награды: 1

Рейтинг: 4 636
Репутация: +1

Сообщение japancar » 21 май 2009, 09:33

Читайте также:
При включении зажигания, магнитола не выключается

ALEXX_72 , бюджет кнопка 20 р магазин” саша” на тульской, провода 2 жильный 5 метров магазин “вега” 50 р (осталась половина), изолента 10 р, банка пива 30 р.

Сообщения: 5327 Зарегистрирован: 08 окт 2008, 00:00 Награды: 1

Рейтинг: 19 677
Репутация: +31

Сообщение ALEXX_72 » 21 май 2009, 09:38

jakik , japancar , спасибо за коменты
japancar , на тусу пригоню 99 там глянем

Хотелось бы еще пару авторитетных мнений того кто знает и делал подобное

Сообщения: 2217 Зарегистрирован: 29 окт 2006, 00:00 Награды: 1

Рейтинг: 3 892
Репутация: +3

Сообщение maxut » 21 май 2009, 09:46

на 2-х предыдущих ам дедлал и ездил не один год. Ставил кнопку с индикатором, очень удобно в пропке и сигнализирует лишний раз , когда горит лишняя лампочка. Бывает забываешься.

Сообщения: 4906 Зарегистрирован: 02 дек 2007, 00:00 Награды: 1

Рейтинг: 9 448
Репутация: +11

Сообщение ganstown » 21 май 2009, 10:02

Принудительное полезная штука тоже себе делал на предыдущей машине. Особенно хорошо в пробке и на перевале когда датчик может внезапно подвести. Я цеплял провода на сам датчик не поленись и поставь светодиод будет видно когда вентилятор срабатывает

Сообщения: 3366 Зарегистрирован: 28 июн 2007, 00:00 Награды: 1

Рейтинг: 7 616
Репутация: +24

Сообщение gorodovoy » 21 май 2009, 10:19

у меня тоже сделано так, но есть одно большое НО. если датчик включения вентилятора исправен то кнопка это лажа. Объясняю почему. если включить вентилятор принудительно, то эффекта от него почти ноль, так как радиатор еще холодный, так как термостат еще не открылся. А при рабочих устройствах итак не должна греться.

Я вот себе на поездку на юг планирую на карбовой семерке ТАЗ сделать такую схему.

Вырвать все внутренности из термосата и забить чепик в малый круг охлаждения, чтобы тосол всегда шел по большому кругу (скажите будет долго греца, да и насрать даже -5 мне пофиг а на юге +15 +25 даже ночью). И так как не нашел датчик включения вентилятора с меньшей температуры чем 92-87 поставлю его в верхний патрубок внедриф туда металлическую трубку от волговского движка(там есть резьба специально под датчик). и так как горячий тосол в радиатор идет через верхний патрубок то там температура 92 быстрей будет чем внизу радиатора. Соответственно будет быстрей включаться карлсон. НУ соответственно кнопка принудительного включения вентилятора при модернизированном таким способом термостатом будет актуально на все 100%. Из бабла 2 хомута по 30 рэ и трубка с волгоря рублей 150-200
работа с перекурами 20 минут.

Схема проверена лет пять назад на карбовой девятке

Сообщения: 5327 Зарегистрирован: 08 окт 2008, 00:00 Награды: 1

Рейтинг: 19 677
Репутация: +31

Сообщение ALEXX_72 » 21 май 2009, 10:51

Рабочая температура на моей 99 100 градусов, вентилятор врубается на 115. Нормально ли это. Может проще термостат поменять, а не морочиться с кнопкой.

Сообщения: 3366 Зарегистрирован: 28 июн 2007, 00:00 Награды: 1

Рейтинг: 7 616
Репутация: +24

Сообщение gorodovoy » 21 май 2009, 11:03

ALEXX_72 , поставь новый термос если на него ргешиш и датчик включения карлсона от классики у него температура срабатывание ниже. И щастье тебе будет полные штаны

Сообщения: 5327 Зарегистрирован: 08 окт 2008, 00:00 Награды: 1

Рейтинг: 19 677
Репутация: +31

Сообщение ALEXX_72 » 21 май 2009, 12:34

gorodovoy , дак вот вроде работает, раз печка греет как зверь.

хоть не много не по теме но спрошу.
Какой термостат лучше ставить и на какой температуре ккакой срабатывает.

Сообщения: 3366 Зарегистрирован: 28 июн 2007, 00:00 Награды: 1

Рейтинг: 7 616
Репутация: +24

Сообщение gorodovoy » 21 май 2009, 12:45

ALEXX_72 писал(а): gorodovoy , дак вот вроде работает, раз печка греет как зверь.

хоть не много не по теме но спрошу.
Какой термостат лучше ставить и на какой температуре ккакой срабатывает.

если честн ХЗ бери свой родной да не парься. Я вот сколько не искал не смог на классику найти с температурой открывания меньше чем на заводском и с датчиклом включения вентилятора такая же история

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: