Гидравлическое сцепление: суть, устройство, привод и принцип работы

Гидравлический привод сцепления

Сцепление является важнейшим элементом любого автомобиля, принимающим на себя многочисленные нагрузки и удары, возникающие в процессе езды. Поэтому особую важность имеет его устройство, функциональные особенности и разновидности. Сцепление может иметь механический и гидравлический привод.

Сцепление с гидравлическим приводом

Впервые устройство появилось в 1905 году, предназначалось для применения в морских судах, но спустя какое-то время один инженер занялся его установкой на авто.

Принцип базируется на обеспечении сцепления двигателя и коробки передач, в ходе чего происходит поглощение вибраций, и автомобиль начинает плавное движение.

Рассмотрим устройство и принцип функционирования системы.

Гидравлический привод

Гидравлический привод сцепления обладает более сложной структурой. Несмотря на сложную систему, устройство в работе является более совершенным. Главный и рабочий цилиндр сцепления автомобиля имеют одинаковый принцип дефектовки деталей, поэтому они описываются по отдельности редко.

Особенности

Гидропривод сцепления для автомобиля имеет несколько конструктивных особенностей:

  • устройство предполагает отсутствие троса, подвергаемого износу и поломкам, поэтому можно экономить на затратах;
  • соединение осуществляется штоком, обладающим регулируемой конструкцией и сложным механизмом;
  • цилиндр располагается традиционно в области корпуса картера;
  • главный цилиндр сцепления и бачок жидкости совместимы по своему расположению.

Главный и рабочий цилиндр имеют соединение с помощью магистрали, где расположена рабочая жидкость. Принцип работы имеет сходство с действием гидравлической системы тормозов, которое базируется традиционно на особенностях свойств несжимаемой жидкости.

Поломки

Рабочий цилиндр автомобиля подвергается поломкам, поэтому тем, кто хочет сэкономить время на ремонте, стоит осуществить его замену новым элементом. Цилиндр продается, как и шайбы для уплотнения, в комплекте. Устанавливаются компоненты под гидравлический шланг, в области болта крепления. Если их нет в наборе, стоит приобрести отдельно и установить на автомобиль.

Полностью заменять цилиндр автомобиля нецелесообразно с экономической точки зрения, достаточно поменять специальные резиновые манжеты, которые продаются в ремонтных комплектах. Отдавать машину стоит в ремонт только в проверенные сервисы, чтобы достигнуть оптимального результата.

Как работает

От педали сцепления к его механизму передается усилие с помощью жидкости, находящейся в гидроцилиндрах привода, соединяющих важнейшие элементы. Большой диск находится на острой стороне вала и кожуха, выполненного из стали. Последний закрепляется в области маховика. Внутри него есть пружина со специальными выжимными рычажками. На оси конструкции располагается специальная управляющая педаль, которая приподнимается к кронштейну на кузове. Она опускается при выключении сцепления и переключении передачи.

Особенности выбора минерального масла. Можно ли использовать его в гидроприводе сцепления

Минеральное масло должно приспособиться к тяжелым условиям функционирования в передачах, ведь температурный режим может достигать +150 С. К маслам, соответственно, предъявлены жесткие требования, поскольку помимо выполнения функции смазки трущихся поверхностей они играют роль рабочего тела.

Так, минеральное масло должно обладать достаточным количеством эксплуатационных качеств:

  • высокая стабильность в течение полного эксплуатационного срока;
  • минеральное масло должно иметь интенсивную аэрацию;
  • высокие показатели образования пены;
  • минеральное масло должно характеризоваться присутствием в составе противокоррозионных присадок, обеспечивающих снижение действия коррозии;
  • оптимальный уровень вязкости и плотности, который должно иметь минеральное масло. Если уровень и КПД высокие, показатель вязкости – минимальный, если нужно обеспечить в области поверхностей трения пленку – требуется высокий показатель вязкости;
  • отсутствие качеств агрессивности в отношении деталей, используемых для уплотнения и по сравнению с другими элементами, работающими в системе.

Нередко на практике применяется специальное минеральное масло, которое изготовлено на базе веретенных компонентов с низким уровнем вязкости и присутствием присадок.

Однако стоит обратить особое внимание: в современных автомобилях минеральное масло в гидроприводе сцепления не используется, так как оно может разрушить резиновые элементы конструкции. Для этого применяют специальную тормозную жидкость DOT4. Также недопустимо смешивание тормозных жидкостей разных типов.

Заключение

Таким образом, устройство гидравлического привода автомобиля является сложным, но, несмотря на это, имеет массу преимуществ и особенностей функционирования. Минеральное масло не стоит использовать в гидравлическом приводе автомобиля, чтобы не возникло серьезных проблем с его эксплуатацией и ремонтом.

Гидравлический привод сцепления

Сцепление – это механизм, предназначенный для передачи крутящего момента двигателя к коробке передач, а также плавного соединения и разъединения двигателя с механизмами трансмиссии. С его помощью можно начинать движение на автомобиле, переключать передачи, останавливаться с работающим двигателем, маневрировать при резком изменении скорости.

Механизм сцепления предохраняет детали двигателя и трансмиссии автомобиля от повреждений и перегрузок при быстром включении передач и резком торможении.

В конце этой статьи смотрите видео-урок, в котором очень наглядно продемонстрированно, как работает механизм сцепления в автомобиле.

А ниже мы расскажем о принципе работы сцепления автомобиля, об устройстве и типах приводов включения и выключения сцепления, и о том, как правильно пользоваться механизмом сцепления на автомобилях с механической коробкой передач.

Принцип работы сцепления автомобиля

Принцип работы сцепления автомобиля заключается в плавном соединении и разъединении между собой двух металлических дисков: один жестко привязан к валу двигателя, а второй – к коробке переключения передач.

Механизм сцепления приводится в действие тросом, ведущим от педали в подкапотное пространство автомобиля непосредственно к самому механизму сцепления. При нажатой педали происходит разъединение двигателя и трансмиссии.

Основными деталями механизма сцепления являются:

  • Маховик коленвала;
  • Ведущий диск (нажимной);
  • Ведомый диск.

Диск, передающий усилие двигателя, называется ведущим (он же нажимной или «корзина» сцепления). Он крепится шарнирными соединениями к штампованному стальному кожуху, который, в свою очередь, жестко соединен болтами с маховиком коленчатого вала. Такой вид крепления позволяет ведущему диску сцепления изменять расстояние до кожуха.

При продольном перемещении «корзина» сцепления прижимает к маховику диск, называемый ведомым. Он соединен с первичным валом коробки переключения передач. В рабочем положении ведомый диск зафиксирован между маховиком и нажимным диском, а при нажатии на педаль сцепления он освобождается.

Плавность включения сцепления обеспечивается за счет проскальзывания дисков до момента их полного прижатия друг к другу. Для этого ведомый диск делают из нескольких частей, разделенных упругими пластинами. Также он имеет специальные накладки из материала, устойчивого к нагреву и износу. Нажимной диск сцепления тоже подпружинен и имеет теплоизолирующие прокладки.

Читайте также:
Диск сцепления: ведомый и нажимной диски

При отпущенной педали сцепления ведущий и ведомый диски прижимаются сильными пружинами к маховику, образуя жесткую конструкцию. При этом вал коробки передач начинает вращаться со скоростью вращения коленвала, передавая усилие к узлам трансмиссии и далее через приводные валы к колесам. Автомобиль трогается с места.

Но скорости двух валов не могут моментально стать одинаковыми, автомобиль в этом случае «прыгнет» и заглохнет. Поэтому педаль управления сцеплением отпускается плавно, чтобы с помощью сил трения уравнять вращение ведущего и ведомого дисков. Тогда можно нажатием на педаль акселератора изменять скорость вращения коленвала и, соответственно, управлять скоростью движения автомобиля.

Такой вид сцепления называется сухим, дисковым и постоянно замкнутым. Это значит, что для его работы нужны сухие поверхности дисков, при отпущенной педали, соединенных друг с другом.

Гидравлический привод

Гидравлический привод сцепления обладает более сложной структурой. Несмотря на сложную систему, устройство в работе является более совершенным. Главный и рабочий цилиндр сцепления автомобиля имеют одинаковый принцип дефектовки деталей, поэтому они описываются по отдельности редко.

Особенности

Гидропривод сцепления для автомобиля имеет несколько конструктивных особенностей:

  • устройство предполагает отсутствие троса, подвергаемого износу и поломкам, поэтому можно экономить на затратах;
  • соединение осуществляется штоком, обладающим регулируемой конструкцией и сложным механизмом;
  • цилиндр располагается традиционно в области корпуса картера;
  • главный цилиндр сцепления и бачок жидкости совместимы по своему расположению.

Главный и рабочий цилиндр имеют соединение с помощью магистрали, где расположена рабочая жидкость. Принцип работы имеет сходство с действием гидравлической системы тормозов, которое базируется традиционно на особенностях свойств несжимаемой жидкости.

Поломки

Рабочий цилиндр автомобиля подвергается поломкам, поэтому тем, кто хочет сэкономить время на ремонте, стоит осуществить его замену новым элементом. Цилиндр продается, как и шайбы для уплотнения, в комплекте. Устанавливаются компоненты под гидравлический шланг, в области болта крепления. Если их нет в наборе, стоит приобрести отдельно и установить на автомобиль.

Полностью заменять цилиндр автомобиля нецелесообразно с экономической точки зрения, достаточно поменять специальные резиновые манжеты, которые продаются в ремонтных комплектах. Отдавать машину стоит в ремонт только в проверенные сервисы, чтобы достигнуть оптимального результата.

Как работает

От педали сцепления к его механизму передается усилие с помощью жидкости, находящейся в гидроцилиндрах привода, соединяющих важнейшие элементы. Большой диск находится на острой стороне вала и кожуха, выполненного из стали. Последний закрепляется в области маховика. Внутри него есть пружина со специальными выжимными рычажками. На оси конструкции располагается специальная управляющая педаль, которая приподнимается к кронштейну на кузове. Она опускается при выключении сцепления и переключении передачи.

Принцип работы приводов сцепления

Принцип работы привода сцепления автомобиля, с которым усилие от педали передается на механизм переключения, может быть механическим, гидравлическим или электрическим.

Механический привод сцепления конструктивно самый простой: он представляет собой стальной трос, связывающий тягу педали и рычаг включения сцепления. На нем обычно находится резьбовое соединение, которым можно регулировать длину троса. Недостаток такого привода – большее усилие при нажатии на педаль.

Гидравлический привод комфортнее в работе, особенно если приходится часто пользоваться сцеплением. Его принцип работы похож на работу тормозной системы: при нажатии на педаль поршень давит на жидкость, которая, двигаясь в цилиндре, приводит в движение толкатель рычага включения сцепления. В этом случае ход педали мягче, но нужно следить за состоянием гидравлических шлангов, и контролировать уровень и качество заливаемой в систему гидравлической жидкости.

Электрический привод отличается от механического тем, что трос выключения сцепления приводится в движение от электромотора, который включается при нажатии на педаль. В остальном его устройство мало чем отличается от механического привода.

Основные неисправности

Основным неисправностями приводов сцепления является выход из строя одного из элементов системы вследствие износа.

В механическом приводе сцепления чаще всего выходит из строя трос, который связывает педаль сцепления и вилку переключения. Вследствие износа трос может порваться, перекрутиться или растянуться, что приводит к ухудшению работы сцепления.

Основными причинами возникновения проблем с работой гидравлического привода сцепления может быть следующее:

  1. Не герметичность систем трубопроводов.
  2. Отсутствие или малое количество рабочей жидкости в системе.
  3. Выход из строя одного из цилиндров из-за износа манжет, перекоса штока или повреждения наружного корпуса.


В случае с электрогидравлической системой к выше приведенным неисправностям гидравлической системы можно добавить проблемы с электрикой, механизмом, который приводит в действие цилиндры, системой управления работы привода.

Привод сцепления должен всегда находиться в исправном состоянии, поэтому необходимо своевременно обращаться на специализированные сервисные центры, где опытные мастера смогут провести качественную диагностику и ремонт отдельных элементов привода.

Также на эту тему вы можете почитать:

Дизельный BMW X3 с механической коробкой – отличный кроссовер для России

Китайский Chery Tiggo с пробегом не так плох, как кажется

Рестайлинг седана Ford Focus 2: обновленный вид и новые качества

Выбрать недорогой внедорожник — дело не простое

Новый автомобиль до 300000 рублей возможно ли купить?

Поделитесь в социальных сетях

Alex S 17 октября, 2013

Опубликовано в: Полезные советы и устройство авто

Метки: Как устроен автомобиль

Как правильно пользоваться сцеплением на автомобиле

На практике работа со сцеплением автомобиля в основном выражается в выработке навыка правильного трогания с места, особенно на подъеме. При оживленном городском движении умелая работа с педалью позволит автомобилю двигаться плавно и не заглохнуть при резком торможении.

При начале движения, нужно, отпуская педаль сцепления, уловить момент соприкосновения дисков, уравновесить скорости их вращения, и дальше плавно отпустить педаль. Ориентир – число оборотов двигателя. Если двигатель работает равномерно, значит, сцепление включается правильно.

Сцеплением следует пользоваться лишь при старте, переключении передач и при остановке автомобиля. Выполнение этого требования продлит срок его службы.

  • Резкое или, наоборот, замедленное отпускание педали сцепления при старте приводит к ускоренному износу рабочей поверхности дисков.
  • Остановка на светофоре при нажатой педали и включенной передаче не лучшим образом скажется на работе нажимных пружин, подшипника и вилки выключения.
Читайте также:
Где собирают Рено Сандеро: страна-производитель, где делают в России?

Две главные неисправности механизма сцепления – это недостаточно плотное соприкосновение дисков и недостаточно полное их разъединение.

  1. В первом случае сцепление пробуксовывает, а у автомобиля будет наблюдаться плохая динамика разгона. Обычно это является результатом износа ведомого диска, его фрикционных накладок.
  2. Во втором случае в результате неполного разъединения дисков при включенной передаче и нажатой педали автомобиль пытается поехать.

Если эти неисправности не устраняются регулировкой привода, то необходим ремонт самого механизма в стационарных условиях.

Из чего состоит сцепление

Чтоб не ломать сцепление, нужно знать не только как оно работает поверхностно и какие его функции, но и с каких деталей оно состоит. К основным составляющим частям относят ведомую и ведущую части, механизм отключения и нажимную систему.

Момент вращения двигателя передается от маховика на детали ведущей части, последние в свою очередь передают крутящий момент на ведущий вал КПП. Момент трения обеспечивается благодаря нажимному механизму, который благодаря плотному сцеплению ведомой и ведущей части, дает долгожданный результат движения.

Немаловажным считается выключение сцепления. Так один диск, на котором расположены периферическим образом пружины, расположено в чугунном картере, тот в свою очередь располагается в блок-картере двигателя.

В ведущую часть входит кожух сцепления и маховик, последний в свою очередь крепится к маховику коленчатого вала за счет шести специальных болтов. Нажимной диск размещается в средней части кожуха. Вращающий момент нажимного диска передается от маховика через три выступления, которые имеются в диске и входят в окна кожуха. Ведомый диск, ступица, ведущий вал коробки смены передач являются основными и обязательными составными ведомой части сцепления.

По обе стороны ведомого диска размещены фрикционные накладки, изготовлены из медно-асбестового состава (или же иного металлоасбестового состава), которые выдерживают необычайно высокую температуру и известны своими фрикционными свойствами. Со ступицей ведомый диск соединен заклепками либо же через пружины. Эти пружины являются составной частью пружинно-фрикционного гасителя вращающихся колебаний (то есть демпфера)

МЕХАНИЗМ СЦЕПЛЕНИЯ

Механизм сцепления

представляет собой устройство, в котором происходит передача крутящего момента за счет работы сил трения. Механизм сцепления позволяет кратковременно разъединять двигатель и коробку передач, а затем плавно их соединять. Элементы механизма заключены в картер сцепления, который крепится к картеру двигателя.

Механизм сцепления состоит из

  • картера и кожуха,
  • ведущего диска (которым является маховик двигателя),
  • нажимного диска с пружинами,
  • ведомого диска с износостойкими накладками.

Ведомый диск постоянно прижат к маховику нажимным диском под воздействием сильных пружин. За счет огромных сил трения между маховиком, ведомым и нажимным дисками, все это вместе вращается при работе двигателя. Но только тогда, когда водитель не трогает педаль сцепления, независимо от того едет ли или стоит на месте автомобиль.

Для начала движения машины, необходимо прижать ведомый диск, связанный с ведущими колесами к вращающемуся маховику, то есть — включить сцепление. И это сложная задача, так как угловая скорость вращения маховика составляет 20 — 25 оборотов в секунду, а скорость вращения ведущих колес – ноль.
Сцепление включено
Как это сделать? Для этого надо всегда правильно отпускать педаль сцепления, только в три этапа.

На первом этапе

работы по включению сцепления — приотпускаем педаль, т.е. даем возможность пружинам нажимного диска подвести ведомый диск к маховику до их легкого соприкосновения. За счет сил трения диск, проскальзывая некоторое время относительно маховика, тоже начнет вращаться, а автомобиль потихоньку ползти.

На втором этапе

– удерживаем ведомый диск от какого-либо перемещения, т.е. на две — три секунды удерживаем педаль сцепления в средней позиции для того, чтобы скорость вращения маховика и диска уравнялись. Машина при этом увеличивает скорость движения.

На третьем этапе

— маховик вместе с нажимным и ведомым дисками уже вращаются вместе без проскальзывания и с одинаковой скоростью, 100%-но передавая крутящий момент к коробке передач и далее на ведущие колеса автомобиля. Это соответствует состоянию механизма сцепления – включено, автомобиль едет. Теперь остается только полностью отпустить педаль сцепления и убрать с нее ногу.

Если при начале движения педаль сцепления резко бросить, то автомобиль «прыгнет» вперед, а двигатель заглохнет.

Для выключения сцепления

водитель нажимает на педаль, при этом нажимной диск отходит от маховика и освобождает ведомый диск, прерывая передачу крутящего момента от двигателя к коробке передач. Нажимать на педаль сцепления следует достаточно быстрым, но не резким, спокойным движением до конца хода педали.
Сцепление выключено
Действия водителя по выключению и включению сцепления в течение поездки повторяются много раз. Однако,
освоив работу с педалью сцепления в три этапа
, позже это войдет в привычку, которая обеспечит плавность хода автомобиля и комфортность пассажирам.

Характеристики керамического и металлокерамического сцепления

В последнее время любители экстремальной быстрой езды открыли для себя керамическое и металлокерамическое сцепление. Керамика значительно выигрывает, если ее установить на мощный агрегат, который любит стартовать с пробуксовкой и сжигать резину. Металлокерамическое сцепление может выдерживать значительные нагрузки и является лучшим выбором гонщиков.

Диски производят с добавление углеродистого волокна, кевлара и керамики. Такой состав позволяет на 10–15% поднять передачу крутящего момента без увеличения прижимной силы, оказываемой на корзину. Живут такие диски, как правило, в четыре раза дольше обычных. Производят 3-х, 4-х, 6-и лепестковые модели, которые отлично справляются с температурными и механическими нагрузками. Некоторые водители жалуются на слишком резкое переключение передач при керамическом сцеплении, но определенного мнения на этот счет среди автомобилистов пока нет.

Привод сцепления

Управление сцеплением в автомобилях с механической коробкой передач производится с помощью педали, но педаль — это лишь один из элементов привода сцепления, а все самое главное скрыто от глаз водителя. О том, что такое привод сцепления, каких он бывает видов, как устроен и как работает, читайте в этой статье.

Читайте также:
Моторное масло Роснефть полусинтетика 10W-40: отзывы профессионалов

Назначение и классификация приводов сцепления

Привод сцепления — специальная система, предназначенная для управления сцеплением в автомобилях с механической коробкой передач. С помощью привода усилие от педали передается на вилку выключения сцепления, а через нее — на пружину, что позволяет простым положением педали управлять положением дисков сцепления.

Передать усилие от педали на вилку можно разными способами, и именно на этом строится классификация приводов сцепления. Сегодня выделяют два основных типа привода:

Также существуют комбинированные приводы (электрогидравлический, электромеханический, то есть — с использованием электромоторов), электромагнитный и другие типы приводов, но они не нашли широкого применения в современных автомобилях. Поэтому расскажем только об основных типах привода сцепления.

Схема механического привода выключения сцепления и механизма сцепления:

  1. коленчатый вал
  2. маховик
  3. ведомый диск
  4. нажимной диск
  5. кожух сцепления
  6. нажимные пружины
  7. отжимные рычаги
  8. подшипник выключения сцепления
  9. вилка выключения сцепления
  10. металлический трос
  11. рычаг привода
  12. педаль сцепления
  13. шестерня первичного вала
  14. картер коробки передач
  15. первичный вал коробки передач

Устройство и принцип работы механического привода сцепления

Главная особенность механического привода сцепления в том, что в нем усилие от педали к вилке передается с помощью металлического троса. В состав механического привода входят следующие основные компоненты:

– Педаль сцепления;
– Рычажный привод;
– Трос в гибкой оболочке;
– Вилка выключения сцепления;
– Устройство регулирования свободного хода педали.

Принцип действия механического привода тоже прост: при нажатии на педаль с помощью рычажной передачи трос натягивается и тянет за собой вилку выключения сцепления, которая через муфту и подшипник сжимает пружину — сцепление выключается. Возврат педали производится пружиной. Регулировка свободного хода педали, а также компенсация износа фрикционных накладок на дисках производится с помощью регулировочной гайки, расположенной на конце троса.

Механический привод широко применяется на мотоциклах и легковых автомобилях (где сцепление имеет небольшую массу и требует небольших усилий для управления), он очень прост в производстве и регулировании, надежен и имеет очень низкую стоимость. Однако недостаток механического привода в его трущихся деталях — стальной тросик со временем изнашивается, он может заклинить или оборваться, свободный ход педали увеличивается и т.д. Но, несмотря на это, механический привод сцепления вряд ли в будущем уступит место более совершенным механизмам.

Устройство и принцип работы гидравлического привода сцепления

В гидравлическом приводе сцепления используется принцип передачи усилия с помощью несжимаемой жидкости. Устройство привода не отличается сложностью:

– Педаль сцепления;
– Главный цилиндр;
– Рабочий цилиндр;
– Магистраль гидропривода;
– Бачок с рабочей жидкостью.

Работа гидравлического привода, как и работа любого другого гидропривода, очень проста: при нажатии на педаль происходит сжатие жидкости в главном цилиндре, жидкость под давлением через магистраль поступает в рабочий цилиндр и толкает поршень, который, в свою очередь, с помощью штока толкает вилку выключения сцепления. Возврат вилки и поршней в первоначальное положение происходит за счет пружин при отпускании педали.

Часто в гидравлических приводах сцепления используется та же жидкость, что и в тормозной системе — обе системы питаются жидкостью из одного бачка.

Гидравлический привод имеет более сложную конструкцию и более высокую стоимость, однако он надежен, не подвержен износу и позволяет управлять сцеплением минимальными усилиями. В грузовых автомобилях гидравлический привод часто дополняется пневматическими или гидравлическими усилителями.

Устройство и принцип работы электронного привода сцепления

В последнее время многие компании предлагают совершенно новые конструкции приводов сцепления, которые находят применение в перспективных автомобилях, в том числе гибридных и электрических. Отдельного внимания заслуживает привод «Electronic Clutch System» от компании Bosch.

Electronic Clutch System (дословно — «Электронная система сцепления») — система, которая позволяет на автомобилях с механической коробкой передач реализовать некоторые функции автоматических коробок. В частности, при движении на первой передаче по городским пробкам управление автомобилем производится только педалями газа и тормоза (сцепление выключается при отпускании акселератора), педаль сцепления становится нужной только при переключении на вторую и более высокие передачи.

Электронный привод сцепления объединяет электронный блок педали сцепления, ряд датчиков (датчик положения рычага переключения скоростей, положения педали газа и другие), электронный блок управления и электрогидравлический привод вилки выключения сцепления. Также электронное сцепление связано с электронной системой управления двигателем, благодаря чему при переключении скоростей происходит автоматическое изменение оборотов двигателя.

Электронное сцепление дает возможность реализовать несколько полезных функций, которые снижают утомляемость водителя и уменьшают расход топлива. Как заявляет производитель, экономия топлива может достичь 10% и более, что при современных ценах на бензин даст ощутимый эффект.

На сегодняшний день система Electronic Clutch System находится на стадии тестирования, поэтому применяется ограниченно, но в будущем она может получить самое широкое распространение.

Другие статьи

На прицепах и полуприцепах иностранного производство широко применяются компоненты ходовой части от немецкого концерна BPW. Для монтажа колес на ходовой используется специализированный крепеж — шпильки BPW. Все об этом крепеже, его существующих типах, параметрах и применяемости читайте в материале.

Для монтажа автомобильных стекол в кузовные элементы используются специальные детали, обеспечивающие уплотнение, фиксацию и демпфирование — уплотнители. Все об уплотнителях стекол, их типах, конструктивных особенностях и характеристиках, а также о подборе и замене этих элементов — читайте в статье.

В практике авторемонта и при выполнении слесарно-монтажных работ возникает необходимость работы с резьбовым крепежом, имеющим неудобное положение или наклон. В этих ситуациях на помощь приходят карданные переходники для ключей — об этих приспособлениях, их конструкции и применении читайте в статье.

Южнокорейские автомобили SSANGYONG оснащаются тормозной системой с гидравлическим приводом, в которой применяются тормозные шланги. Все о тормозных шлангах SSANGYONG, их типах, особенностях конструкции и применяемости, а также о вопросах выбора и замены этих деталей — читайте в представленной статье.

Читайте также:
Масло Elf: отзывы специалистов

Привод сцепления

Сцепление – это механизм, предназначенный для передачи крутящего момента двигателя к коробке передач, а также плавного соединения и разъединения двигателя с механизмами трансмиссии. С его помощью можно начинать движение на автомобиле, переключать передачи, останавливаться с работающим двигателем, маневрировать при резком изменении скорости.

Механизм сцепления предохраняет детали двигателя и трансмиссии автомобиля от повреждений и перегрузок при быстром включении передач и резком торможении.

В конце этой статьи смотрите видео-урок, в котором очень наглядно продемонстрированно, как работает механизм сцепления в автомобиле.

А ниже мы расскажем о принципе работы сцепления автомобиля, об устройстве и типах приводов включения и выключения сцепления, и о том, как правильно пользоваться механизмом сцепления на автомобилях с механической коробкой передач.

Принцип работы сцепления автомобиля

Принцип работы сцепления автомобиля заключается в плавном соединении и разъединении между собой двух металлических дисков: один жестко привязан к валу двигателя, а второй – к коробке переключения передач.

Механизм сцепления приводится в действие тросом, ведущим от педали в подкапотное пространство автомобиля непосредственно к самому механизму сцепления. При нажатой педали происходит разъединение двигателя и трансмиссии.

Основными деталями механизма сцепления являются:

  • Маховик коленвала;
  • Ведущий диск (нажимной);
  • Ведомый диск.

Диск, передающий усилие двигателя, называется ведущим (он же нажимной или «корзина» сцепления). Он крепится шарнирными соединениями к штампованному стальному кожуху, который, в свою очередь, жестко соединен болтами с маховиком коленчатого вала. Такой вид крепления позволяет ведущему диску сцепления изменять расстояние до кожуха.

При продольном перемещении «корзина» сцепления прижимает к маховику диск, называемый ведомым. Он соединен с первичным валом коробки переключения передач. В рабочем положении ведомый диск зафиксирован между маховиком и нажимным диском, а при нажатии на педаль сцепления он освобождается.

Плавность включения сцепления обеспечивается за счет проскальзывания дисков до момента их полного прижатия друг к другу. Для этого ведомый диск делают из нескольких частей, разделенных упругими пластинами. Также он имеет специальные накладки из материала, устойчивого к нагреву и износу. Нажимной диск сцепления тоже подпружинен и имеет теплоизолирующие прокладки.

При отпущенной педали сцепления ведущий и ведомый диски прижимаются сильными пружинами к маховику, образуя жесткую конструкцию. При этом вал коробки передач начинает вращаться со скоростью вращения коленвала, передавая усилие к узлам трансмиссии и далее через приводные валы к колесам. Автомобиль трогается с места.

Но скорости двух валов не могут моментально стать одинаковыми, автомобиль в этом случае «прыгнет» и заглохнет. Поэтому педаль управления сцеплением отпускается плавно, чтобы с помощью сил трения уравнять вращение ведущего и ведомого дисков. Тогда можно нажатием на педаль акселератора изменять скорость вращения коленвала и, соответственно, управлять скоростью движения автомобиля.

Такой вид сцепления называется сухим, дисковым и постоянно замкнутым. Это значит, что для его работы нужны сухие поверхности дисков, при отпущенной педали, соединенных друг с другом.

Виды привода сцепления

Приводное устройство предназначено для дистанционного управления сцеплением непосредственно водителем в салоне автомобиля. Нажатие на педаль сцепления напрямую влияет на нажимной диск.

Известны следующие типы приводов:

  • механический;
  • гидравлический;
  • электрогидравлический;
  • пневмогидравлический.

Наиболее распространены первые два типа. В грузовиках и автобусах используется пневмогидравлический привод. Электрогидравлика устанавливается на машины с роботизированной коробкой передач.

В некоторых автомобилях для облегчения используется пневматический или вакуумный усилитель.

Механический привод

Механический или тросовый привод отличается простой конструкцией и невысокой стоимостью. Он неприхотлив в обслуживании и состоит из минимального количества элементов. Механический привод установлен в легковых и легких грузовых автомобилях.

К компонентам механического привода относятся:

  • трос сцепления;
  • педаль сцепления;
  • вилка разблокировки;
  • выжимной подшипник;
  • механизм регулировки.

Трос сцепления с покрытием является основным приводным элементом. Трос сцепления прикреплен к вилке, а также к педали в салоне. В тот момент, когда водитель нажимает на педаль, действие передается через трос на вилку и выжимной подшипник. В результате маховик отсоединяется от трансмиссии и, следовательно, выключается сцепление.

На соединении троса и приводного рычага предусмотрен регулировочный механизм, который гарантирует свободное движение педали сцепления.

Ход педали сцепления является свободным, пока не будет активирован привод. Расстояние, пройденное педалью без особых усилий со стороны водителя, когда она нажата, является свободным.

Если переключения передач шумные, а в начале движения есть легкая тряска автомобиля, необходимо будет отрегулировать ход педали.

Зазор сцепления должен составлять от 35 до 50 мм свободного хода педали. Нормы этих показателей указаны в технической документации на автомобиль. Ход педали регулируется изменением длины штока с помощью регулировочной гайки.

В грузовиках используется не тросовый, а механический рычажный привод.

К преимуществам механического привода относятся:

  • простота устройства;
  • низкая стоимость;
  • эксплуатационная надежность.

Основным недостатком считается меньший КПД, чем у гидропривода.

Гидравлический привод сцепления

Гидравлический привод более сложен. Его компоненты, помимо выжимного подшипника, вилки и педали, также имеют гидравлическую магистраль, заменяющую трос сцепления.

Фактически, эта магистраль аналогична гидравлической тормозной системе и состоит из следующих компонентов:

  • главный цилиндр сцепления;
  • рабочий цилиндр сцепления;
  • бачок и магистраль тормозной жидкости.

Устройство главного цилиндра сцепления аналогично устройству главного тормозного цилиндра. Главный цилиндр сцепления состоит из поршня с толкателем, расположенного в картере. Он также включает резервуар для жидкости и уплотнительные кольца.

Рабочий цилиндр сцепления, аналогичный по конструкции главному цилиндру, дополнительно оснащен клапаном для удаления воздуха из системы.

Механизм действия гидравлического привода такой же, как и у механического, только сила передается жидкостью в трубопроводе, а не тросом.

Когда водитель нажимает на педаль, усилие передается через шток на главный цилиндр сцепления. Затем из-за несжимаемости жидкости приводятся в действие рабочий цилиндр сцепления и рычаг управления выжимным подшипником.

В качестве преимуществ гидравлического привода можно выделить следующие особенности:

  • гидравлическое сцепление позволяет передавать усилие на значительные расстояния с высокой эффективностью;
  • сопротивление переливу жидкости в гидравлические компоненты способствует плавному включению сцепления.
Читайте также:
Масло Wolf: отзывы специалистов

Главный недостаток гидропривода — более сложный ремонт по сравнению с механическим. Утечки рабочей жидкости и воздух в системе гидропривода — пожалуй, самые частые неисправности, которые встречаются в главном и рабочем цилиндрах сцепления.

Гидравлический привод применяется в легковых и грузовых автомобилях с откидной кабиной.

Принцип работы приводов сцепления

Принцип работы привода сцепления автомобиля, с которым усилие от педали передается на механизм переключения, может быть механическим, гидравлическим или электрическим.

Механический привод сцепления конструктивно самый простой: он представляет собой стальной трос, связывающий тягу педали и рычаг включения сцепления. На нем обычно находится резьбовое соединение, которым можно регулировать длину троса. Недостаток такого привода – большее усилие при нажатии на педаль.

Гидравлический привод комфортнее в работе, особенно если приходится часто пользоваться сцеплением. Его принцип работы похож на работу тормозной системы: при нажатии на педаль поршень давит на жидкость, которая, двигаясь в цилиндре, приводит в движение толкатель рычага включения сцепления. В этом случае ход педали мягче, но нужно следить за состоянием гидравлических шлангов, и контролировать уровень и качество заливаемой в систему гидравлической жидкости.

Электрический привод отличается от механического тем, что трос выключения сцепления приводится в движение от электромотора, который включается при нажатии на педаль. В остальном его устройство мало чем отличается от механического привода.

Основные неисправности

Основным неисправностями приводов сцепления является выход из строя одного из элементов системы вследствие износа.

В механическом приводе сцепления чаще всего выходит из строя трос, который связывает педаль сцепления и вилку переключения. Вследствие износа трос может порваться, перекрутиться или растянуться, что приводит к ухудшению работы сцепления.

Основными причинами возникновения проблем с работой гидравлического привода сцепления может быть следующее:

  1. Не герметичность систем трубопроводов.
  2. Отсутствие или малое количество рабочей жидкости в системе.
  3. Выход из строя одного из цилиндров из-за износа манжет, перекоса штока или повреждения наружного корпуса.


В случае с электрогидравлической системой к выше приведенным неисправностям гидравлической системы можно добавить проблемы с электрикой, механизмом, который приводит в действие цилиндры, системой управления работы привода.

Привод сцепления должен всегда находиться в исправном состоянии, поэтому необходимо своевременно обращаться на специализированные сервисные центры, где опытные мастера смогут провести качественную диагностику и ремонт отдельных элементов привода.

Также на эту тему вы можете почитать:

Тюнинг ВАЗ-2170 (Лада Приора) улучшит стандартную Приору

Форд Мондео с пробегом: какие могут быть проблемы?

Система охлаждения двигателя также незаменимая вещь в автомобиле

Топливный насос (бензонасос) ВАЗ 2109 (карбюратор) и его замена

Volvo S40 2003-2013 годов на вторичном рынке

Поделитесь в социальных сетях

Alex S 17 октября, 2013

Опубликовано в: Полезные советы и устройство авто

Метки: Как устроен автомобиль

Как правильно пользоваться сцеплением на автомобиле

На практике работа со сцеплением автомобиля в основном выражается в выработке навыка правильного трогания с места, особенно на подъеме. При оживленном городском движении умелая работа с педалью позволит автомобилю двигаться плавно и не заглохнуть при резком торможении.

При начале движения, нужно, отпуская педаль сцепления, уловить момент соприкосновения дисков, уравновесить скорости их вращения, и дальше плавно отпустить педаль. Ориентир – число оборотов двигателя. Если двигатель работает равномерно, значит, сцепление включается правильно.

Сцеплением следует пользоваться лишь при старте, переключении передач и при остановке автомобиля. Выполнение этого требования продлит срок его службы.

  • Резкое или, наоборот, замедленное отпускание педали сцепления при старте приводит к ускоренному износу рабочей поверхности дисков.
  • Остановка на светофоре при нажатой педали и включенной передаче не лучшим образом скажется на работе нажимных пружин, подшипника и вилки выключения.

Две главные неисправности механизма сцепления – это недостаточно плотное соприкосновение дисков и недостаточно полное их разъединение.

  1. В первом случае сцепление пробуксовывает, а у автомобиля будет наблюдаться плохая динамика разгона. Обычно это является результатом износа ведомого диска, его фрикционных накладок.
  2. Во втором случае в результате неполного разъединения дисков при включенной передаче и нажатой педали автомобиль пытается поехать.

Если эти неисправности не устраняются регулировкой привода, то необходим ремонт самого механизма в стационарных условиях.

Разновидности привода сцепления

Зависимо от реализации передачи усилия различают несколько видов приводов, используемых соответственно типу сцепления, компоновке авто и принятым при конструировании техническим решениям по обеспечению управления.

На сегодняшний день основными типами привода являются:

  • Механический.
  • Гидравлический.

Есть ещё электрический привод, имеющий в составе электромотор, и комбинированные варианты, но они не получили массового распространения в современном автомобилестроении, потому далее речь пойдёт именно об основных разновидностях.

При условии отсутствия усилителя, усилие на ножной рычаг не должно быть более 150 Н для легкового транспорта и 250 Н для грузовиков, полный ход педали находиться в границах 120-190 мм, при этом общее передаточное число привода имеет значение 25-50. Если же управление сцеплением требует усилий больше допустимого, для упрощения задачи в конструкции используют пневматические и вакуумные усилители.

Легковой автомобиль чаще всего оснащается механизмом с гидравлическим типом привода, нередко с серво пружиной, или механическим тросовым приводом. Для малотоннажных грузовиков или транспорта средней грузоподъёмности также применяют механический и гидравлический типы приводов, а для крупнотоннажного транспорта (автомобили-тягачи, часто используемые для формирования автопоездов) устанавливается комбинированный – механический с пневмоусилителем или гидравлический с пневмоусилителем.

Виды устройства

На современных автомобилях устанавливают привод трех видов: гидравлический, механический.

Механический привод

Механический – чаще всего используется в конструкции небольших легковых авто. Его основные преимущества – простата, надежность в эксплуатации, взаимозаменяемость узлов, низкая стоимость ремонта.

Механический привод включает в себя педаль, трос, а также рычажную передачу.

Основной элемент этой версии – трос, заключенный в оболочку, он соединяет педаль и вилку выключения.

После нажатия на педаль усилие посредством троса передается на рычажную передачу, та, в свою очередь, двигает вилку, которая выключает сцепление.

Читайте также:
Зачем и как часто менять тормозную жидкость в автомобиле

Устройство оснащено механизмом, которым можно регулировать свободный ход педали. Необходимость такой регулировки вызвана постоянным изменением расположения педали вследствие износа фрикционных накладок.

Сцепление: устройство, принцип работы

Сцепление представляет собой специальный механизм в составе трансмиссии автомобиля или трактора, предназначенный для передачи крутящего момента в соединении маховика двигателя с первичным трансмиссионным валом и гашения крутильных колебаний. Сцепление в нужное время разобщает двигатель и коробку передач, чтобы обеспечить плавное трогание с места и плавный переход с одной шестерни КПП на другую в ходе переключения передач. Механизм сцепления имеется в любой двигающейся технике, только на гусеничных тракторах и бронетехнике используется аналогичный термин «фрикцион».

Для простого описания необходимости использования сцепления можно сопоставить работу двигателя с понятием «движение транспорта». Если бы маховик мотора был непосредственно соединён с ведущим мостом транспортного средства, то при запуске двигателя автомобиль или трактор должен сразу же ехать. Так же, и для остановки машины необходимо будет заглушить мотор. И все эти действия будут проходить сразу, резко. А сцепление позволяет варьировать процесс получения энергии движения от двигателя, избавляя транспортное средство от резких рывков.

Механизмы сцепления в «молодые годы» мирового машиностроения

Изобретение механизма сцепления приписывается Карлу Бенцу. Так это или не так, достоверно установить невозможно: производством и совершенствованием первых автомобилей в XIX веке одновременно занималось сразу несколько компаний, и все они шли по своему развитию, что называется, «ноздря в ноздрю».
Старейшим видом сцепления, широко распространённого на большинстве автомобилей конца XIX – начала XX века, было сцепление конического типа. Его фрикционные поверхности имели коническую форму. Такое сцепление передавало бо́льший крутящий момент, при тех же габаритах, по сравнению с нынешним однодисковым, было предельно простым по своему устройству и в уходе за ним.

Комфортабельный «Мерседес Бенц НР-50» – автомобиль с конической фрикционной муфтой.

Однако тяжёлый конический диск такого типа сцепления обладал большой инерцией, и при переключении передач после выжима педали ещё продолжал вращаться на холостом ходу, из-за чего включение передачи было затруднённой операцией. Для торможения диска сцепления применили специальный агрегат – тормоз сцепления, однако его использование было лишь половиной решения проблемы, как и замена одного конуса двумя менее массивными. В итоге, уже в 1920-х годах от такой тяжёлой и громоздкой (к кому же требующей значительных мускульных усилий в использовании) конструкции, как коническое сцепление, полностью отказались. Также существовало сцепление с обратным конусом, работавшее на разжимание.

Однако сам принцип данного механизма нашёл новое воплощение в конструкции современных коробок переключения передач с синхронизаторами. Синхронизаторы коробки передач, по сути, и представляют собою маленькие конические сцепления, которые работают за счёт трения бронзы (или другого металла с высоким коэффициентом трения) по стали.

Устройство сцепления

Было изобретено несколько видов механизма сцепления. Однако стали основными и получили самое широкое распространение механизмы, основанные на использовании одного или нескольких фрикционных дисков, которые плотно сжаты пружинами друг с другом, или с маховиком. Фрикционный материал этих дисков схож с тем, что используется на тормозных колодках.

Ведомый диск сцепления оборудован пружинными пластинами, к которым прикреплены две фрикционные накладки. Центральная часть ведомого диска – ступица – снабжена шлицевым соединением и может перемещаться по первичному валу коробки переключения передач. С основной частью диска ступица соединена подвижным образом, посредством демпферных пружин и фрикционных шайб гасителя крутильных колебаний.

Все составные части механизма сцепления расположены в картере, который при помощи болтов крепится к силовому агрегату. Все детали сцепления являются закрытыми кожухом (корзина сцепления), приворачиваемым к маховику болтами; оси выжимных рычагов через проушины крепятся к кожуху.

Принцип функционирования механизма сцепления

В своём обычном рабочем положении нажимной и ведомый диски являются плотно прижатыми друг к другу с помощью мощных пружин, посредством рычагов и выжимного подшипника. Под воздействием силы трения между данными дисками, на первичный вал коробки переключения передач от маховика мотора постоянно передаётся крутящий момент. Если отвести нажимной диск от ведомого, то произойдёт прерывание крутящего момента от мотора и прекращение вращения ведомого диска с валом.

Рассоединение дисков производится при помощи вилки сцепления, которая своим строением напоминает обычные качели. Данная вилка приводится в действие посредством цепочки рычагов и тяг педалью сцепления в кабине автомобиля или трактора.

Выжимание педали сцепления производит разведение дисков сцепления, в результате чего между ними остаётся свободное пространство. Наоборот, отпускание педали и выключение сцепления приводит к плотному сжатию ведущего и ведомого дисков механизма. Усилие от нажатия на педаль сцепления передаётся на устройство механически (посредством рычажного или тросового механизма), либо гидравлическим приводом.

Ведомый диск в постоянном режиме зафиксирован вместе с маховиком с помощью диска нажимного. Для того, чтобы транспортное средство тронулось, ведомый диск должен соприкоснуться с вращающимся маховиком. Водитель нажимает на педаль сцепления, и это позволяет ему включить первую передачу. Когда педаль он отпускает, пружины нажимного диска снова соединяют ведомый диск с маховиком. Скорости вращения диска и маховика постепенно выравнивается, благодаря чему и достигается плавное и правильное движение транспортного средства.

В полной мере крутящий момент начинает передаваться тогда, когда достигается полное выравнивание скоростей вращения ведомого диска, диска сцепления и маховика. Если при трогании с места перестать выжимать педаль сцепления слишком резко, «бросить» её, то машина ли трактор может заглохнуть. При «бросании» педали ведомый диск с силой прижимается к диску ведущему (к маховику) и затормаживает его до такой степени, что мотор может остановиться (заглохнуть). То есть, в этом случае сцепление работает подобно тормозному механизму. Поэтому педаль сцепления после момента начала зацепления дисков нужно отпускать плавно.

При переключении любой другой передачи, кроме первой, нужно также добиваться неизменно плавного хода педали. Это позволит продлить срок эксплуатации механизма сцепления и всей трансмиссии в целом.

Виды механизмов сцепления

Механизмы сцепления можно классифицировать:

  • по способу управления – сцепление с механическим, гидравлическим, электрическим или комбинированным приводом (например, гидромеханическим);
  • по виду трения – сухое (когда фрикционные накладки работают в воздушной среде) или мокрое (сцепление, работающее в масляной ванне);
  • по режиму включения – постоянно замкнутые и непостоянно замкнутые;
  • по числу ведомых дисков – одно-, двух-, или многодисковые;
  • по типу и расположению нажимных пружин – с расположением нескольких цилиндрических пружин по периферии нажимного диска и с центральной диафрагменной пружиной;
  • по числу потоков передач крутящего момента – одно-, или двухпоточные.
Читайте также:
TRW: страна производитель запчастей фирмы и отзывы специалистов


Механический вариант является наиболее простым по конструкции и принципу действия. В случае его использования, водитель или механизатор, нажимая на педаль, посредством тяг и тросов передаёт усилие непосредственно на вилку сцепления. В гидравлическом варианте сцепления задействуется также поршень с гидравлической жидкостью. Как правило, данный вариант применяется на большегрузном автотранспорте, чтобы облегчить работу водителя.

При использовании гидравлического привода сцепления величина полного хода педали остаётся постоянной (это обеспечивается наличием у педали сцепления возвратной пружины). Однако величина её рабочего хода меняется, компенсируя уменьшение толщины ведомого диска в результате износа: чем меньше становится толщина диска, тем, при том же полном ходе педали сцепления, бо́льшим оказывается её рабочий ход, и тем «выше» (ближе к концу обратного хода педали при её отпускании) срабатывает сцепление.

У педали сцепления с механическим тросовым приводом полный ход прибавляется по мере износа ведомого диска (педаль сцепления приподнимается вверх относительно уровня пола), вместе с этим увеличивается и её рабочий ход. Свободный ход педали устанавливается регулировкой длины троса. Он составляет в нормальном положении порядка 30…40 мм.

По своей конструкции, сцепление бывает электромагнитного, фрикционного или гидравлического типа.
Фрикционный вариант сцепления обеспечивает передачу вращающего момента при помощи силы трения. Сцепление электромагнитного вида контролируется посредством магнитного поля. В гидравлическом варианте сцепления связь обеспечивается под воздействием потока гидравлической жидкости.

Сцепление является электромагнитным, если сжатие ведущих и ведомых элементов механизма производится посредством электромагнитных сил. Электромагнитное сцепление постоянно находится в разомкнутом состоянии.
Этот редкий вид сцепления устанавливался на некоторых модификациях машин с ручным управлением. Между ведущим и ведомым дисками находился ферромагнитный порошок, не мешающий раздельному вращению валов. Но после подачи электрического тока в обмотку электромагнита порошок «затвердевал» и передавал крутящий момент.

Для высоких нагрузок, таких как грузовые и спортивные автомобили, применяется также керамическое сцепление с высоким коэффициентом трения, однако оно «схватывает» резко, поэтому непригодно для использования в стандартных автомобилях.

Наиболее распространённый тип – фрикционный. В зависимости от количества используемых дисков, оно может быть однодисковым, двухдисковым или многодисковым.

Сухой и мокрый типы сцепления

Кроме того, сцепление может быть мокрым либо сухим. В сухом типе сцепления производится работа дисков в условиях сухого трения. Мокрое сцепление предусматривает эксплуатацию дисков в жидкости. Самым распространённым в современных транспортных средствах является сухое однодисковое сцепление.

Мокрый тип сцепления (работающее в масляной ванне) в наше время применяется, главным образом, на мотоциклах с поперечным расположением двигателя. Поскольку мотоциклетные силовые агрегаты имеют общий масляный картер и для мотора, и для коробки переключения передач. Детали сцепления в них являются совмещёнными с моторной передачей и системой запуска двигателя, и смазываются они общим моторным маслом. На автомобилях же сцепления в масляной ванне практически вышли из употребления.

Двух- и многодисковые сцепления

Двухдисковым или многодисковым сцеплением оснащаются транспортные средства с очень мощными моторами. При тех же размерах такие варианты сцепления осуществляют передачу существенно бо́льшего крутящего момента, обеспечивают значительно бо́льший ресурс всей конструкции. Между ведомыми дисками располагается проставка. В результате получается больше поверхностей трения. Двухдисковые механизмы устанавливаются для повышения срока службы сцепления, в связи с большой мощностью двигателей и необходимостью передавать увеличенные крутящие моменты.

Трёхдисковое сцепление для Nissan Skyline GT.

Принцип работы таков. Выжимной подшипник нажимает на выжимные рычаги, и они оттягивают нажимной диск. Нажимной диск отходит от первого ведомого и отпускает отжимные пружины. Они отпускают промежуточный ведущий диск, а он отходит за счёт других отжимных пружин от второго фрикционного, настолько же, насколько нажимной отошёл от первого фрикционного. При обратном движении отжимные пружины способствуют равномерному прижатию промежуточного диска ко второму ведомому и нажимного — к первому ведомому.
Нажимные диски перемещаются по шпилькам, которые ввёрнуты в маховик, и к ним же прикреплена корзина сцепления. На шпильки надеты отжимные пружины.

Сцепление с пневматическим усилителем

На тяжёлых грузовых автомобилях большой грузоподъёмности, к примеру, на МАЗах, устанавливается привод сцепления с пневматическим усилителем. Пневмоусиление предназначено для уменьшения мускульного усилия, прилагаемого на педаль сцепления.

Устройство таково: педаль, тяга, золотник (он же клапан управления), шланги, пневматическая камера, рычаги, тормозок, первичный вал с барабаном тормозка. Принцип действия: при отпущенной педали впускной клапан золотника закрыт, а выпускной открыт. При нажатии на педаль усилие через тягу и золотник передаётся на вилку выключения сцепления. В это же время в золотнике открывается впускной клапан и закрывается выпускной – корпус золотника надвигается на выпускной клапан, выпускной клапан прижимается к впускному и закрывается, а впускной этим движением открывается. Воздух через впускной клапан поступает в пневматическую камеру, которая за счёт давления воздуха помогает нажимать вилку выключения сцепления.

Распространённые неисправности сцепления и их признаки

  • Неполное включение сцепления (с «пробуксовками») – последствие замасливания либо износа фрикционных накладок ведомого диска, поломок пружин, неправильной амплитуды хода педали (её малого свободного хода). Чтобы устранить данную неисправность, требуется заменить ведомый диск, устранить задиры на дисках, осмотреть привод на предмет неисправностей.Когда имеет место «пробуксовка», то при отпущенной полностью педали сцепления диски проскальзывают один относительно другого. От длительной пробуксовки диски начинают значительно нагреваться, стальной ведомый диск при этом может покоробиться, а чугунный маховик и нажимной (или нажимные) диски могут покрыться трещинами. Фрикционные накладки в ускоренном режиме изнашиваются и обгорают, и этот горелый запах достигает кабины. Если не ремонтировать, то процесс постепенно прогрессирует, сперва на высоких, потом на низких скоростях. Вплоть до того, что невозможно становится даже тронуться с места на первой передаче.
  • Неполное выключение сцепления (когда сцепление «ведёт») – последствие большого свободного хода сцепления, поломок пружин, покоробившегося ведомого диска или неправильно установленного диска нажимного. Также это возможно при деформации выжимных рычагов; или выжимной подшипник заедает, не передвигается вместе с нажимной муфтой. Возможно, ведомый диск сцепления не передвигается по шлицам (загустела или загрязнилась консистентная смазка). Для устранения этой неисправности необходимо удаление воздуха из гидропривода, регулировка свободного хода педали, замена неработоспособных дисков и пружин.Неполное выключение проявляется хрустящими звуками шестерён при переключении передач и, соответственно, ведёт к ускоренному износу деталей коробки передач.
Читайте также:
Инжекторный двигатель: принцип работы, устройство, чем отличается от карбюраторного

  • Рывки при включении сцепления. Когда автомобиль, несмотря на плавный отпуск педали сцепления, трогается «рывками», то это свидетельствует о разрушении фрикционных накладок, короблении ведомого диска, либо о поломке демпферных пружин, либо об износе фрикционных шайб. Также возможно заедание ведомого диска при передвижении по шлицам первичного вала коробки передач, а также заедание нажимной муфты или разрушение выжимного подшипника.
  • Неисправности системы гидропривода. При попадании воздуха в гидравлический привод выключения сцепления возможно «проваливание» педали, и как следствие — неполное выключение сцепления. В этом случае, необходимо удалить пузырьки воздуха с частью жидкости (прокачать сцепление), и долить свежей.
    Когда в механизмах с тросовым приводом сцепление вообще не выключается, то, возможно, произошёл обрыв троса. Когда педаль сцепления не возвращается в первоначальное положение – произошло отсоединение возвратной пружины. Если при выключении сцепления раздаётся сильный шум, создаваемый выжимным подшипником, то это свидетельствует о его износе.

Итак, механизм сцепления играет огромную роль в функционировании любого автомобиля или трактора. От его исправности и работоспособности во многом зависит техническое состояние всего транспортного средства. Поэтому, для обеспечения долгой и надёжной работы всех элементов механизма сцепления важно пользоваться им плавно, и без необходимости не практиковать излишне долгих нажатий на педаль. При таких щадящих условиях работы сцепление прослужит долго.

Сцепление автомобиля, виды, устройство, принцип работы

Любой механизм должен иметь органы воздействия, а также управление. Не является в этом плане исключением сцепление автомобиля. Предназначенное для кратковременного разъединения трансмиссии и двигателя, оно является неотъемлемой частью любого транспортного средства, служит для обеспечения возможности управления машиной.

Для передачи воздействия от водителя на этот механизм на легковых автомобилях обычно используется гидравлический привод; одной из ответственных деталей подобного устройства является главный цилиндр сцепления.

Об устройстве гидравлического привода

Чтобы лучше понимать, о чем будет идти речь, надо хотя бы схематично представить конструкцию такого привода. Его назначение, устройство, роль в составе автомобиля оставим в стороне, в данном случае важен сам гидравлический привод.

Его реализацию, в качестве примера, как один из возможных вариантов, можно увидеть на приведенном ниже рисунке. Этого достаточно для понимания устройства и работы привода сцепления, а также понимания его роли и значения в составе автомобиля.

Из деталей привода на рисунке необходимо отметить такие узлы:

  1. бачок для заливки тормозной жидкости (1), которая используется в качестве наполнителя гидравлического привода;
  2. главный цилиндр сцепления (2);
  3. гидротрубки (3,4,5) и шланг (7);
  4. рабочий цилиндр сцепления (8);
  5. педаль (6) и возвратная пружина (9).

Особенности выбора минерального масла. Можно ли использовать его в гидроприводе сцепления

Минеральное масло должно приспособиться к тяжелым условиям функционирования в передачах, ведь температурный режим может достигать +150 С. К маслам, соответственно, предъявлены жесткие требования, поскольку помимо выполнения функции смазки трущихся поверхностей они играют роль рабочего тела.

Так, минеральное масло должно обладать достаточным количеством эксплуатационных качеств:

  • высокая стабильность в течение полного эксплуатационного срока;
  • минеральное масло должно иметь интенсивную аэрацию;
  • высокие показатели образования пены;
  • минеральное масло должно характеризоваться присутствием в составе противокоррозионных присадок, обеспечивающих снижение действия коррозии;
  • оптимальный уровень вязкости и плотности, который должно иметь минеральное масло. Если уровень и КПД высокие, показатель вязкости – минимальный, если нужно обеспечить в области поверхностей трения пленку – требуется высокий показатель вязкости;
  • отсутствие качеств агрессивности в отношении деталей, используемых для уплотнения и по сравнению с другими элементами, работающими в системе.

Нередко на практике применяется специальное минеральное масло, которое изготовлено на базе веретенных компонентов с низким уровнем вязкости и присутствием присадок.

Однако стоит обратить особое внимание: в современных автомобилях минеральное масло в гидроприводе сцепления не используется, так как оно может разрушить резиновые элементы конструкции. Для этого применяют специальную тормозную жидкость DOT4. Также недопустимо смешивание тормозных жидкостей разных типов.

Как работает гидравлический привод

Не касаясь устройства отдельных узлов данного механизма, к этому можно будет вернуться немного позже, вполне достаточно упрощенно ознакомиться с его работой. Будем считать, что в привод залито необходимое количество тормозной жидкости, он исправен и полностью работоспособен.

При нажатии на педаль (6) усилие через шток передается в главный цилиндр привода сцепления (2). Он воспринимает это усилие, а затем через систему трубок и шлангов передает его на рабочий цилиндр сцепления. Последний через вилку сцепления и выжимной подшипник отключает трансмиссию от двигателя.

Конструкция и принцип действия фрикционного сцепления

Фрикционные обеспечивают передачу вращения за счет сил трения. Сейчас такой тип является одним из самых распространенных.

При этом существует немало модификаций его с разными конструктивными особенностями. Поэтому сцепления фрикционного типа можно разделить по нескольким критериям:

  • Вид трения;
  • Число потоков передач вращения;
  • Количество ведомых дисков;
  • Тип управления.

В целом все сцепления фрикционного типа работают по одному принципу, различие же между ними сводится лишь к определенным конструктивным особенностям.

Для большего понимания того, как функционирует сцепления этого типа, коротко рассмотрим конструкцию и принцип действия одного из самых распространенных – однодискового, «сухого», которое применяется на самой разной технике, оснащаемой механической КПП.

Читайте также:
Тормозные диски и колодки Meyle: отзывы специалистов и страна-производитель

Основными элементами его являются два диска – ведущий и ведомый. Первый жестко связан с двигателем (прикручен к маховику), второй – соединен с первичным валом КПП.

При этом ведомый диск в процессе работы должен смещаться по валу, поэтому соединен он с валом не жестко, а посредством шлицевого соединения.

Ведущий диск – название условное, поскольку конструкция его включает в себя непосредственно сам диск, корпус, с которым он соединен направляющими, пружины, обеспечивающие прижим диска.

В народе эту составляющую еще часто называют «корзиной» и «феродо» (нарицательное название от компании, занимающейся выпуском запчастей, включая элементы сцепления).

Особенность конструкции «корзины» заключается в том, что диск имеет возможность перемещаться по направляющих относительно корпуса, но пружины удерживают его на максимальном удалении от корпуса, который уже и крепиться жестко к маховику.

Также в конструкции диска входят элементы, которые позволяют осуществлять его перемещение относительно корпуса (диафрагменная пружина или специальные лапки).

Ведомый элемент представляет собой круглый диск, закрепленный на ступице (с проделанным отверстием со шлицами), по обеим сторонам которого закреплены (наклеены, приклепаны) специальные накладки, обеспечивающие повышение трения (фрикционные).

Отметим, что диск со ступицей соединен не напрямую, а посредством специальных демпферов.

Принцип работы у этого типа узла такой: корпус ведущего диска крепиться к маховику. Между корзиной и маховиком помещен ведомый диск.

Поскольку пружины постоянно отжимают ведущий элемент от корпуса, ведомый находится зажатым, то есть, в обычном состоянии вращение передается постоянно.

На первичном валу установлена направляющая втулка, на которой размещен выжимной подшипник, выполняющий роль основного элемента управления.

Посредством вилки этот подшипник связан с приводом. Водитель, воздействуя на привод, обеспечивает перемещение подшипника по втулке.

При этом он начинает давить на диафрагменную пружину или лапки, благодаря чему ведущий диск по направляющим смещается относительно корпуса и ведомый диск высвобождается – происходит прерывание передачи вращения.

Этот принцип работы заложен практически во все виды фрикционного типа, несмотря на их конструктивные особенности.

Как устроен гидропривод

Устройство главного цилиндра сцепления может быть конструктивно выполнено различным способом, но в целом по принципу действия совпадает во всех вариантах. Для примера на рисунке ниже приведен главный цилиндр сцепления в разрезе.

Среди основных деталей можно выделить

  • (2) — толкатель, связывающий механизм с педалью;
  • (3) главный цилиндр;
  • (4) поршень;
  • пробки и возвратная пружина.

Из рисунка видно, что цилиндр сцепления разделен на две части перегородкой. Верхняя половина служит для заправки гидропривода жидкостью, поступающей в цилиндр из бачка (5), и хранения ее необходимого рабочего запаса. Если все настроено и отрегулировано правильно, то ее уровень должен составлять три четверти от рабочего объема.

Нижняя часть служит в качестве рабочей зоны. В исходном состоянии поршень (4) пружиной поджат к разделительной стенке, между толкателем и поршнем образуется зазор А, и через него жидкость заполняет рабочую зону.

При нажатии на педаль толкатель, перемещаясь, перекрывает зазор А, перетекание из верхней части в нижнюю прекращается, начинает перемещаться поршень, передавая через систему трубок и шлангов на рабочий цилиндр усилие от ноги водителя.

Благодаря различию диаметров поршня и выходного отверстия его значение увеличивается, этого становится достаточно для срабатывания сцепления. Такая конструкция привода позволяет при легком нажатии на педаль обеспечивать требуемое усилие для срабатывания всего механизма.

При отпускании педали поршень под воздействием пружины и существующего в системе давления возвращается в исходное положение, туда же перемещается толкатель, благодаря чему восстанавливается свободное проникновение жидкости между двумя частями цилиндра.

Особенности сцепления РКПП

Теперь немного о сцеплении, используемом в трансмиссии с роботизированной КПП.

Конструктивно оно очень похоже на двухдисковый двухпоточный тип, но таковым не является. Его называют просто двойным. А все это из-за особенностей конструкции КПП.

В таком узле присутствует два ведомых диска, который зажаты между маховиком и двумя ведущими дисками (один из них промежуточный).

Каждый из ведомых дисков взаимодействует со своим первичным валом КПП (которых в конструкции коробка – два, и расположены они на одной оси, по сути, один вставлен во второй).

Особенность работы такого сцепления заключается в том, что при наличии двух потоков, одновременно они не задействуются.

В роботизированной коробке имеются так называемые ряды парных и непарных передач, и на каждый из них вращение передается от своего диска сцепления.

То есть, если включена непарная передача, то зажатым оказывается только один из ведомых дисков, а второй находится в свободном состоянии (им вращение не осуществляется).

При смене передачи (переход на парную) диски меняются местами, то есть бывший ранее свободным зажимается, а второй – отпускается. Управляется этот тип сцепления электрическим автоматическим приводом.

Характерные неисправности

Несмотря на свою простоту, главный цилиндр также может послужить источником серьезных неприятностей. Наиболее распространенными причинами дефекта могут быть:

  • недостаток рабочей жидкости;
  • попадание в систему гидропривода воздуха.

В первом случае нужно просто проверить в бачке уровень жидкости, при ее недостаточном количестве надо долить до установленного значения. Для исключения подобного необходимо периодически контролировать положение жидкости в бачке при проведении регламентных работ, а также техническом обслуживании.

Причинами попадания воздуха в главный и рабочий цилиндры, приводящими к отказу сцепления, могут быть трещины в шлангах, износ деталей или подтекание системы в местах соединения ее различных участков.

С целью восстановления работоспособности системы необходимо устранить такие источники подтекания и попадания воздуха в магистраль, главный и рабочий цилиндры, а также прокачать всю систему для удаления из нее уже попавшего воздуха. Эту процедуру можно выполнить вполне самостоятельно, не прибегая к помощи автомастерской. Из-за конструктивных особенностей, которыми обладает главный цилиндр у разных автомобилей, описать правильно эту процедуру затруднительно, хотя вкратце можно отметить, что проводится она нажатием на педаль сцепления. При этом на специальный штуцер или клапан надевается дополнительный шланг, через него рабочая жидкость поступает в отдельную емкость с тормозной жидкостью.

Читайте также:
Где собирают Рено Сандеро: страна-производитель, где делают в России?

Ее уровень в бачке, с которым связан главный цилиндр, не должна опускаться при этом ниже установленного уровня, иначе вновь возможно попадание воздуха. Вместе с жидкостью воздух уходит из системы. Когда его пузырьки прекратят выделяться, можно считать, что система прокачана, и воздух из нее удален. После этого все приводится в первоначальное состояние, проводится необходимая регулировка узлов и механизмов (выставляются зазоры, свободный ход).

Главный цилиндр предназначен для передачи усилия с педали и преобразования его значения до величины, которой должно быть достаточно для перемещения вилки сцепления. При этом сработает механизм сцепления и связь между двигателем и колесами автомобиля будет разорвана.

Нюансы эксплуатации сцепления

Зачастую водители склонны связывать неравномерность и рывки при движении автомобиля с неисправностями сцепления. Эта логика в большинстве случаев ошибочна.

Например, автомобиль при переключении передач с первой на вторую, резко сбрасывает обороты. Здесь виновато не само сцепление, а датчик положения педали сцепления. Находится он за самой педалью сцепления. Неисправности датчика устраняются путем несложного ремонта, после которого сцепление будет вновь работать плавно и без рывков.

Другая ситуация: при переключении передач автомобиль немного дергается, а при трогании с места может заглохнуть. В чем может быть причина? Чаще всего в этом виноват клапан задержки сцепления. Этот клапан обеспечивает определенную скорость, при которой может схватываться маховик, независимо от того, насколько быстро была «брошена» педаль сцепления. Для начинающих водителей эта функция необходима, т.к. клапан задержки сцепления предотвращает чрезмерный износ поверхности диска сцепления.

Электромагнитный тип

Отдельным типом фрикционного сцепления можно считать электромагнитное.

Конструктивно оно очень схоже с обычным однодисковым «сухим» сцеплением. Но у него отсутствуют элементы, осуществляющие прижим ведущего диска – пружины.

Вместо них, этот диск соединили с электромагнитом, а в его корпус вмонтировали якорь.

Суть работы этого типа сцепления такая: при подаче напряжения на электромагнит, образуется магнитное поле, которое притягивает магнит к якорю. А поскольку он жестко связан с ведущим диском, то это притягивание сопровождается перемещением последнего и зажимом ведомого элемента.

Этот тип сцепления обладает так называемым непостоянно замкнутым режимом включения. То есть, в отличие от обычных видов, где ведомые диски зажаты постоянно, здесь он находится в свободном состоянии и зажимается только после подачи напряжения на электромагнит.

Гидроблок АКПП

Гидроблок АКПП, что это?
Гидравлическая клапанная плита предназначена для управления муфтами сцепления. Узел обеспечивает бесперебойную работу автоматической коробки передач.

Почему ломаются гидроблоки?
Клапанная плита управления выходит из строя при механическом износе, так как гидроблок АКПП находится под постоянной нагрузкой.
Причины поломок:
Некачественное техобслуживание;
Неправильная эксплуатация;
Выход из строя системы охлаждения;
Несвоевременная замена трансмиссионной жидкости;
Перегрев автомата;
Окисление контактов.

В процессе эксплуатации часто загрязняются и выходят из строя клапаны. Устранить неисправность поможет промывка гидроблока АКПП. Еще одна проблема автоматических коробок – износ пружины. Поломку выявляют специальным высокоточным инструментом.
Разрушить трансмиссию могут грязь и фрикционные материалы. Не рекомендуем делать чистку гидроблока АКПП самостоятельно. Для качественного удаления грязи и продуктов износа необходимы специальные прибора и инструменты.
Как определить, что блок управления не работает?
Признаки неисправности гидроблока АКПП:
Вибрации;
Скрежет;
Пробуксовка;
Рывки и толчки при переключении передач.

Определить точную причину поломки поможет диагностика. К механизму подключают компьютер и проводят все необходимые тесты.
Особенности ремонта
Если коробка сильно гудит и плохо переключаются передачи, не спешите покупать гидроблок АКПП. Отправляйтесь на диагностику. Не пытайтесь самостоятельно определить поломку. Доверьтесь специалистам.
Ремонт выполняется поэтапно:
Визуальный осмотр;
Полная диагностика;
Снятие;
Разборка;
Промывка гидроблока АКПП;
Замена деталей;
Сборка.

Деталь промывают в специальном растворителе. Запчасть чистят кисточкой. Удаляют стружку, пыль и другие загрязнения. Затем агрегат сушат сжатым воздухом.
Полезные советы автовладельцам
Предотвратить поломки и избежать ремонта блоков АКПП помогут профилактические мероприятия. Внимательно следите за состоянием системы охлаждения автоматической коробки. Соблюдайте правила эксплуатации.
Зимой не стоит начинать движение на машине в непрогретой АКПП. Регулярно проверяйте уровень масла в коробке передач. Используйтесь только качественную трансмиссионную жидкость. Своевременно меняйте масло и фильтры.
Ремонт гидроблока АКПП выполняем на профессиональном оборудовании. Используем оригинальные автозапчасти от надежных производителей.
Если после ремонта не удалось восстановить работу трансмиссии, закажите гидроблок. В нашем магазине есть все необходимые запчасти. Выбирать комплектующие легко и просто. Узнайте цену гидроблока АКПП и закажите запчасть через онлайн заявку. Стоимость будет зависеть от марки машины
Гидроблок АКПП передач обеспечивает эффективную работу муфт сцепления и фриционов. Узел состоит из каналов, клапанов и датчиков, отвечающих за переключение передач.
Причины и признаки неисправности гидроблока
Если вы услышали посторонние стуки в коробке при переключении передач, отправляйтесь в наш автосервис. При резких ударах в трансмиссии требуется ремонт гидроблока АКПП.
Причины поломок:
Перегрев автоматической коробки;
Несвоевременная замена масла;
Загрязнение клапанов;
Выход из строя соленоидов;
Износ расходников.

Чтобы избежать ремонта гидроблока АКПП, выполняйте регулярное техобслуживание автоматической коробки. Вовремя очищайте от грязи все комплектующие.
В автосервисе перед ремонтом устройство сканируют. Выявляют все дефекты в работе узла. Расшифровывают и устраняют коды ошибок.
Мастера выполняют:
Диагностику;
Чистку и замену соленоидов;
Разборку;
Промывку;
Восстановление блока клапанов;
Калибровку;
Сборку;
Обкатку.

В зависимости от износа АКПП выполняют восстановление или замену гидроблока.
Выбираем подходящий ремкомплект
Для удобства капитального ремонта гидроблоков АКПП производители разработали ремкомплекты АКПП. Полный набор запчастей формируется для каждой автоматической коробки передач. В комплект входят ходовые часто используемые детали:
Прокладки;
Манжеты;
Фрикционы;
Сальники.

Состав ремкомплекта АКПП может отличаться в зависимости от производителя.
Разновидности наборов:
Мастер кит;
Оверол;
Баннер.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: