Устройство карбюратора: из чего состоит, система питания карбюраторного двигателя, принцип работы

Принцип работы и устройство карбюратора

Карбюратор – это обязательный узел питания двигателя внутреннего сгорания автомобилей и мотоциклов. До конца XX века карбюраторы устанавливались на большинство автомобилей, но в наши дни их прочно вытеснили более удобные и функциональные инжекторные системы. Сейчас они часто встречаются в автомобилях возрастом 20 и более лет.

Принцип работы и устройство простейшего карбюратора

В первом устройстве, изобретенном Л. Христофорисом в 1876 году, топливо нагревалось, испарялось, образовавшиеся пары и потоки воздуха смешивались. Спустя год решение усовершенствовали, использовав принцип топливного распыления, который стал основой для следующих проектов.

До широкого распространения привычных нам устройств были барботажные модели и мембранно-игольчатые. Первые — в виде бензинового бака, в котором близко от поверхности располагалась доска и пара патрубков для подачи из атмосферы и забора смеси топлива и воздуха в мотор. Воздух перемещался под доской, непосредственно над топливом, обогащался парами и становился горючей смесью. Это была простая, но рабочая система. Дроссельная заслонка находилась отдельно. На функционирование мотора с барботажным узлом влияли природные условия — испаряемость зависела от температуры. Такую систему было сложно регулировать, она была взрывоопасна.
Схема барботажного карбюратора.

Мембранно-игольчатое устройство размещается отдельно от бензобака. В нем было нескольких камер, жестко связанных с помощью штока. Седло клапана, через который подавалось топливо, запиралось иглой на штоке. Камеры были соединены топливным каналом и смесительной зоной. Параметры устройства определяли пружины, на которые надавливали мембраны. Такой карбюратор работал независимо от условий на улице и местоположения, был популярен в начале 19 века, когда его устанавливали на автомобилях и мототехнике, в самолетах с поршневыми моторами внутреннего сгорания.
Схема мембранно-игольчатого карбюратора.

Устройство карбюратора наших дней

Сегодня используются поплавковые модели, которые являются самыми усовершенствованными. Их можно увидеть на большинстве машин.
Устройство и работа карбюратора: 1 — регулировочный винт пускового устройства; 2 — штифт рычага 24, входящий в паз рычага 3; 3 — рычаг управления воздушной заслонкой; 4 — винт крепления тяги привода воздушной заслонки; 5 — регулировочный винт приоткрывания дроссельной заслонки первой камеры; 6 — рычаг дроссельной заслонки первой камеры; 7 — ось дроссельной заслонки первой камеры; 8 — рычаг привода дроссельной заслонки второй камеры; 9 — регулировочный винт количества смеси холостого хода; 10 — ось дроссельной заслонки второй камеры; 11 — рычаг дроссельной заслонки второй камеры; 12 — патрубок отсоса картерных газов в задроссельное пространство карбюратора; 13 — дроссельная заслонка второй камеры; 14 — выходные отверстия переходной системы второй камеры; 15 — корпус дроссельных заслонок; 16 — распылитель главной дозирующей системы второй камеры; 17 — малый диффузор; 18 — корпус топливного жиклера переходной системы второй камеры; 19 — распылитель ускорительного насоса; 20 — патрубок подачи топлива в карбюратор; 21 — распылитель эконостата; 22 — воздушная заслонка; 23 — шток пускового устройства; 24 — рычаг воздушной заслонки; 25 — крышка пускового устройства; 26 — штифт рычага 24, действующий от штока 23 пускового устройства; 27 — ось воздушной заслонки; 28 — крышка карбюратора; 29 — трубка с топливным жиклером эконостата; 30 — топливный фильтр; 31 — игольчатый клапан; 32 — эмульсионная трубка второй камеры; 33 — поплавок; 34 — главный топливный жиклер второй камеры; 35 — перепускной жиклер ускорительного насоса; 36 — рычаг привода дроссельных заслонок; 37 — рычаг привода ускорительного насоса; 38 — диафрагма ускорительного насоса; 39 — регулировочный винт качества (состава) смеси холостого хода; 40 — патрубок забора разрежения вакуумного регулятора опережения зажигания. 41 — корпус карбюраторов. 42 — электромагнитный запорный клапан; 43 — регулировочный винт добавочного воздуха заводской подрегулировки системы холостого хода; 44 — диафрагма пускового устройства.

Поплавковый карбюратор состоит из множества элементов:

  • Поплавковая камера для сохранения горючего на заданном уровне.
  • Поплавок, оснащенный специальной иглой, который используется для дозирования уровня бензина.
  • Смесительная камера ― для смешения топлива в мелкодисперсном виде с воздухом.
  • Диффузор — зауженное место для увеличения скорости воздуха.
  • Распылитель, оснащенный жиклером, который соединяет камеры, подает смесь в диффузор.
  • Заслонка дросселя — для регулировки потока рабочей жидкости.
  • Воздушная заслонка — для регулировки потока воздуха, поступающего в карбюратор. С помощью элемента создают смесь «обогащенную», «нормальную» или «бедную».
  • Система холостого хода — подает горючее мимо смесительной камеры по спецканалам в задроссельное пространство.
  • Эконостаты и экономайзеры — обеспечивают дополнительную подачу топлива при существенных нагрузках. Эконостаты работают от разрежения воздуха, экономайзерами управляют принудительно.
  • Подсос горючего — для принудительного обогащения топливной смеси. С помощью рычага водитель приоткрывает дроссельную заслонку, воздух проходит сквозь смесительную камеру и забирает больше горючего. В результате смесь становится обогащенной, помогает запустить холодный двигатель.

Принцип работы карбюратора

Сначала горючее направляется в поплавковую камеру. В момент достижения необходимого уровня поплавок поднимается и перекрывает клапан, через который подается топливо. Когда поплавок опускается, подача топлива возобновляется.

Далее топливо идет в смесительную камеру, где создается горючая смесь. Сверху подается воздух, который соединяется с горючим. В камере находится распылительная трубка с жиклером, а также дроссель и диффузор. Жиклер — это пробка, которая не допускает вытекание топлива из поплавковой камеры. Заслонка, соединенная с педалью, называется дросселем. При надавливании ногой, она открывается, и горючая смесь попадает в цилиндр. В результате машина набирает скорость. В диффузоре находится распределительная трубка.

В момент запуска в смесительной камере формируется разрежение, из распылителя разбрызгивается топливо. Поднимается поток воздуха, который при смешении с топливом, переносит горючее в цилиндр.

В новейших устройствах помимо смесительной и поплавковой камер, находится также пусковое и дозирующее устройство, конструкция холостого хода, экономайзер, ускорительный насос. Устаревшие модели не обеспечивают полноценную работу мотора, поскольку в зависимости от того, холодный или горячий двигатель, смесь должна быть разной. Если запускают холодный двигатель, требуется горючая смесь, обогащенная топливом. В случае, когда мотор долго работал, необходима смесь с небольшим включением топлива.

Для увеличения скорости или езды в нагруженной машине, нужна смесь, сильно обогащенная топливом. Аналогичная ситуация при движении на холостом ходу, на малых оборотах. Такие условия простой карбюратор обеспечить не в силах.

Читайте также:
Калильное число свечей зажигания: таблица

С целью обогащения смеси топливом применяют насос-ускоритель. Когда резко выжимают педаль, проходит воздух, который движется быстрее топлива. С этим связана нехватка топлива в горючей жидкости. При наличии насоса силовой агрегат работает мощнее.

Система холостого хода идеальна для малых оборотов. При таком режиме силовой агрегат функционирует на обогащенной смеси. Однако, одной дозирующей системы недостаточно, ведь на холостом ходу дроссель открывается лишь частично. В новейших карбюраторах горючая смесь формируется около дросселя, поскольку в этом месте, даже если дроссель открыт не полностью, создается необходимое разрежение.

Для запуска мотора требуется смесь, которая обогащена топливом. С этой целью в смесительной камере предусмотрена заслонка с клапаном, через который проходит воздух. На приборной панели автомобиля есть ручка для управления клапаном. При вытягивании ручки клапан приоткрывается, и объем воздуха в смесительной камере сокращается. А количество горючего в смеси возрастает. В результате даже первые порции смеси достаточно насыщены, и мотор быстро заводится. При наличии спускового устройства двигатель работает даже при пониженных температурах.

Возможности дозирующего устройства позволяют создавать смесь, подходящую для работы двигателя в разных режимах. С помощью системы автоматически регулируется состав смеси при работе мотора с малой и средней нагрузкой. В таком режиме топливо подается через дозирующую систему. Однако, даже при полном открытии дросселя горючего часто недостаточно. По этой причине, когда дроссель практически полностью открыт, рычаг, соединенный с ним, воздействует на тягу привода экономайзера — так открывается дополнительный проход из поплавковой камеры. В итоге двигатель функционирует более мощно.

Классификация карбюраторов

Все карбюраторы можно различать по следующим признакам:

  • По направлению движения потока различают горизонтальные и вертикальные модели.
  • По регулировке отверстия распылителя и формированию разрежения разделяют: системы с постоянным разрежением; с постоянным сечением (серийные устройства); с золотниковым дросселированием — модели для мототехники, в них вместо дроссельной заслонки объем поступающей смеси регулирует шибер-золотник.
  • По числу смесительных камер выпускают одно- и многокамерные модели. «Сдвоенные» устройства используются в моторах с цилиндрами, которые находятся далеко друг от друга. В результате каждая половина осуществляет впрыск в свои цилиндры.

Система питания карбюраторного двигателя

Автомобиль с двигателем внутреннего сгорания на одной заправке топливом может проехать 500–600 и более километров. Это расстояние называется запасом хода автомобиля. Конечно, максимальный пробег машины “на одном баке” зависит от многих факторов, но основным из них является правильная работа системы питания двигателя.

Система питания двигателя предназначена для хранения, очистки и подачи топлива, очистки воздуха, приготовления горючей смеси и подачи ее в цилиндры двигателя. На различных режимах работы двигателя количество и качество горючей смеси должно быть различным, и это тоже обеспечивается системой питания.

Поскольку в этой книге мы рассматриваем работу бензинового двигателя, то в дальнейшем под топливом будет подразумеваться именно бензин.

Рис. 13. Схема расположения элементов системы питания карбюраторного двигателя: 1 – заливная горловина с пробкой; 2 – топливный бак; 3 – датчик указателя уровня топлива с поплавком; 4 – топливозаборник с фильтром; 5 – топливопроводы; 6 – фильтр тонкой очистки топлива; 7 – топливный насос; 8 – поплавковая камера карбюратора с поплавком; 9 – воздушный фильтр; 10 – смесительная камера карбюратора; 11 – впускной клапан; 12 – впускной трубопровод; 13 – камера сгорания

Система питания состоит из (рис. 13):

– фильтров очистки топлива;

Топливный бак – это емкость для хранения топлива. Обычно он размещается в задней, более безопасной при аварии части автомобиля. От топливного бака к карбюратору бензин поступает по топливопроводам, которые тянутся вдоль всего автомобиля, как правило, под днищем кузова.

Первая ступень очистки топлива – это сетка на топливозаборнике внутри бака. Она не дает возможности содержащимся в бензине крупным примесям и воде попасть в систему питания двигателя.

Количество бензина в баке водитель может контролировать по показаниям указателя уровня топлива, расположенного на щитке приборов (см. рис. 67).

Емкость топливного бака среднестатистического легкового автомобиля обычно составляет 40–50 литров. Когда уровень бензина в баке уменьшается до 5–9 литров, на щитке приборов загорается соответствующая желтая (или красная) лампочка – лампа резерва топлива. Это сигнал водителю о том, что пора подумать о заправке.

Топливный фильтр (как правило, устанавливается самостоятельно) – второй этап очистки топлива. Фильтр располагается в моторном отсеке и предназначен для тонкой очистки бензина, поступающего к топливному насосу (возможна установка фильтра и после насоса). Обычно применяется неразборный фильтр, при загрязнении которого требуется его замена.

Топливный насос – предназначен для принудительной подачи топлива из бака в карбюратор.

Насос состоит из (рис. 14): корпуса, диафрагмы с пружиной и механизмом привода, впускного и нагнетательного (выпускного) клапанов. В нем также находится сетчатый фильтр для очередной третьей ступени очистки бензина.

Рис. 14. Схема работы топливного насоса: 1 нагнетательный патрубок; 2 – стяжной болт; 3 – крышка; 4 – всасывающий патрубок; 5 – впускной клапан с пружиной; 6 – корпус; 7 – диафрагма насоса; 8 – рычаг ручной подкачки; 9 – тяга; 10 – рычаг механической подкачки; 11 – пружина; 12 – шток; 13 – эксцентрик; 14 – нагнетательный клапан с пружиной; 15 – фильтр очистки топлива

Топливный насос приводится в действие от валика привода масляного насоса или от распределительного вала двигателя. При вращении вышеуказанных валов, имеющийся на них эксцентрик набегает на шток привода топливного насоса. Шток начинает давить на рычаг, а тот, в свою очередь, заставляет диафрагму опускаться вниз. Над диафрагмой создается разряжение и впускной клапан, преодолевая усилие пружины, открывается. Порция топлива из бака засасывается в пространство над диафрагмой.

При сбегании эксцентрика со штока диафрагма освобождается от воздействия рычага и за счет жесткости пружины поднимается вверх. Возникающее при этом давление закрывает впускной клапан и открывает нагнетательный. Бензин над диафрагмой поступает к карбюратору. При очередном набегании эксцентрика на шток процесс повторяется.

Читайте также:
Рено Сандеро Степвей: обзоры, тесты и отзывы владельцев о Renault Sandero Stepway всех поколений

Обратите внимание на то, что подача бензина в карбюратор происходит лишь за счет усилия пружины, которая поднимает диафрагму. Это означает, что когда поплавковая камера карбюратора будет заполнена и игольчатый клапан (см. рис. 16) перекроет путь бензину, диафрагма топливного насоса останется в нижнем положении. До тех пор, пока двигатель не израсходует часть топлива из карбюратора, пружина будет не в состоянии “вытолкнуть” из насоса очередную порцию бензина.

Так как топливный бак расположен ниже карбюратора, то возникает необходимость в принудительной подаче бензина. Если предположить, что бак находится на крыше автомобиля, то потребность в насосе отпадает. В этом случае бензин будет поступать в карбюратор самотеком, что и используют некоторые водители в “безвыходной” ситуации при отказе насоса в работе. Закрепив канистру с бензином в положении, явно выше карбюратора и соединив их между собой, можно продолжить поездку (не забывая при этом правил противопожарной безопасности).

Воздушный фильтр (рис. 15)необходим для очистки воздуха, поступающего в цилиндры двигателя. Фильтр устанавливается на верхней части воздушной горловины карбюратора.

Рис. 15. Воздушный фильтр: 1 крышка; 2 – фильтрующий элемент; 3 – корпус; 4 – воздухозаборник

При загрязнении фильтра возрастает сопротивление движению воздуха, что может привести к повышенному расходу топлива, так как горючая смесь будет слишком обогащаться бензином. Чем это грозит кроме лишних финансовых затрат, вы узнаете через несколько страниц.

Карбюратор предназначен для приготовления горючей смеси и подачи ее в цилиндры двигателя. В зависимости от режима работы двигателя карбюратор меняет качество (соотношение бензина и воздуха) и количество смеси.

Карбюратор, это одно из самых сложных устройств автомобиля. Он состоит из множества деталей и имеет несколько систем, которые принимают участие в приготовлении горючей смеси, обеспечивая бесперебойную работу двигателя. Давайте разберемся с устройством и принципом работы карбюратора на несколько упрощенной схеме.

Рис. 16. Схема устройства и работы простейшего карбюратора: 1 топливная трубка; 2 – поплавок с игольчатым клапаном; 3 – отверстие для связи поплавковой камеры с атмосферой; 4 – воздушная заслонка; 5 – распылитель 6 – диффузор; 7 – дроссельная заслонка; 8 – корпус карбюратора; 9 – топливный жиклер

Простейший карбюратор состоит из (рис. 16):

– поплавка с игольчатым запорным клапаном;

– воздушной и дроссельной заслонок;

– топливных и воздушных каналов с жиклерами.

При движении поршня в цилиндре от верхней мертвой точки к нижней (такт впуска), над ним создается разряжение. Поток воздуха с улицы, через воздушный фильтр и карбюратор, устремляется в освободившийся объем цилиндра (см. рис. 13).

При прохождении воздуха через карбюратор, из поплавковой камеры через распылитель, который расположен в самом узком месте смесительной камеры (диффузоре), вытекает топливо (рис. 16). Это происходит по причине разности давлений в поплавковой камере карбюратора, которая связана с атмосферой, и в диффузоре, где создается значительное разрежение.

Поток воздуха дробит вытекающее из распылителя топливо и смешивается с ним. На выходе из диффузора происходит окончательное перемешивание бензина с воздухом, и затем эта горючая смесь поступает в цилиндр.

Каждый из вас периодически пользуется каким-либо устройством, где применен принцип пульверизации. Не важно, что это – флакон с духами, банка с краской и насадкой к пылесосу или бачок-опрыскиватель для увлажнения цветов. В любом случае, за счет разности давлений из некой емкости высасывается жидкость, которая затем дробится и смешивается с воздухом.

Для примера можно взять даже обычный чайник, который вместе со своим носиком очень похож на поплавковую камеру с распылителем.

Нальем в чайник воду так, чтобы уровень в его носике не доходил до края примерно на 1–1,5 мм. Если вы создадите сильный поток воздуха (например, вентилятором или феном), то он будет высасывать воду из носика чайника, смешиваться с ней и “увлажнять” пол в вашей квартире. Примерно так это происходит и в карбюраторе, но здесь тщательно распыленный и смешанный с воздухом бензин попадает в цилиндры двигателя.

Из схемы работы простейшего карбюратора (рис. 16) можно понять, что двигатель не будет работать нормально, если уровень топлива в поплавковой камере (воды в чайнике) выше нормы, так как в этом случае бензина будет выливаться больше чем надо. Если уровень бензина будет меньше нормы, то и его содержание в смеси будет тоже меньше, что опять-таки нарушит правильную работу двигателя. Следовательно, количество бензина в камере всегда должно быть неизменным.

Уровень топлива в поплавковой камере карбюратора регулируется специальным поплавком (рис. 16), который, опускаясь вместе игольчатым запорным клапаном, позволяет бензину поступать в камеру. Когда поплавковая камера начинает наполняться, поплавок всплывает и закрывает игольчатым клапаном проход для бензина.

В салоне автомобиля у водителя под правой ногой имеется педаль “газа”, предназначенная для управления карбюратором. А на что конкретно, на какую деталь карбюратора передается усилие ноги?

Когда водитель “давит на газ”, на самом деле он управляет той заслонкой, которая обозначена на рисунке 16 как дроссельная.

Дроссельная заслонка связана с педалью “газа” посредством рычагов или троса. В исходном положении заслонка закрыта. Когда водитель нажимает на педаль, заслонка начинает открываться и поток воздуха, проходящего через карбюратор, увеличивается. При этом чем больше открывается дроссельная заслонка, тем больше высасывается топлива, так как повышаются объем и скорость потока воздуха, проходящего через диффузор и “высасывающее” разряжение увеличивается.

Когда водитель отпускает педаль “газа”, заслонка под воздействием возвратной пружины начинает закрываться. Поток воздуха уменьшается, и в цилиндры поступает все меньше и меньше горючей смеси. Двигатель теряет обороты, уменьшается скорость вращения колес автомобиля, и соответственно, мы с вами едем медленнее.

А если совсем убрать ногу с педали “газа”?

Тогда дроссельная заслонка закроется полностью. И тут же возникает вопрос. А как теперь со смесеобразованием? Ведь мотор заглохнет!

Оказывается, для поддержания работы двигателя на холостом ходу в карбюраторе есть свои каналы, по которым воздух может попасть под дроссельную заслонку, смешиваясь по пути с бензином (рис. 17 а, поз. 6).

Читайте также:
Shell Helix Ultra 5W-40: характеристики и отзывы про моторное масло

Рис. 17а. Схема работы системы холостого хода: 1 игольчатый клапан поплавковой камеры карбюратора; 2 – топливный жиклер системы холостого хода; 3 – топливный канал системы холостого хода; 4 – воздушная заслонка; 5 – воздушный жиклер системы холостого хода; 6 – канал системы холостого хода; 7 – винт “качества” системы холостого хода; 8 – дроссельная заслонка; 9 – топливный жиклер

При закрытой дроссельной заслонке воздуху не остается другого пути, кроме как проходить в цилиндры по каналу холостого хода. По пути он высасывает бензин из топливного канала и, смешиваясь с ним, превращается в горючую смесь. Почти готовая к “употреблению” смесь попадает в поддроссельное пространство и затем через впускной трубопровод поступает в цилиндры.

На рисунке 17а (поз. 7) показан один из двух винтов регулировки карбюратора. С помощью этого винта регулируется качество смеси (соотношение воздуха и бензина), необходимое для работы двигателя на холостом ходу. Вторым винтом, “количества” смеси (рис. 17б, поз. 1), регулируется плотность прикрытия дроссельной заслонки, от положения которой зависит объем проходящего через карбюратор потока воздуха.

Рис. 17б. Винты регулировки карбюратора: 1 винт “количества”; 2 – винт “качества”

На холостом ходу, при нормально работающей системе подачи топлива и отрегулированном карбюраторе, коленчатый вал двигателя должен устойчиво вращаться со скоростью примерно 800–900 об/мин.

В объеме этой книги не хотелось бы затрагивать работу других систем карбюратора, так как у всех вас будут различные модели этого весьма сложного устройства. Карбюраторы “Озон” отличаются от своих “собратьев” серии “Солекс”, “пятерочные” (ВАЗ-2105) отличается от “восьмерочных” (ВАЗ-2108, 2109), а об “иномарочных” и говорить не стоит. Поэтому хочется еще раз напомнить вам о том, что существует литература по конкретным моделям ваших автомобилей.

Тем не менее в карбюраторных автомобилях отечественного производства есть и кое-что общее. В частности, на панели приборов (или под ней) располагается рукоятка “подсоса”, которая управляет воздушной заслонкой карбюратора (рис. 16 и 17). Если прикрывать эту заслонку (вытягивать рукоятку “подсоса” на себя), то разрежение в смесительной камере карбюратора будет увеличиваться. Вследствие этого топливо из поплавковой камеры начинает высасываться более интенсивно и горючая смесь обогащается, что необходимо для запуска холодного двигателя.

По мере прогрева двигателя, водитель должен постепенно задвигать рукоятку “подсоса” (приоткрывать заслонку), не допуская очень больших оборотов коленчатого вала, так как повышенные обороты не полностью прогретого двигателя резко сокращают его ресурс. По окончании прогрева воздушную заслонку следует открыть полностью (это ее нормальное положение).

О степени прогрева двигателя вам “расскажет” стрелочный указатель температуры охлаждающей жидкости, который расположен на щитке приборов (см. рис. 67). Вертикальное положение стрелки говорит о том, что двигатель прогрелся полностью.

При вытягивании рукоятки “подсоса” на щитке приборов включается лампочка, подсвечивающая окошко (обычно желтого цвета) с соответствующим символом. Погаснет эта лампочка только тогда, когда воздушная заслонка будет полностью открыта (рукоятка “подсоса” полностью задвинута).

Карбюратор смешивает бензин с воздухом в строго определенной пропорции. Горючая смесь называется нормальной, если на одну часть бензина приходится пятнадцать частей воздуха (1:15). В зависимости от различных факторов качество смеси (соотношение бензина и воздуха) может меняться. Если воздуха будет больше, то смесь становится обедненной или бедной. Если воздуха меньше, то смесь превращается в обогащенную или богатую.

Обедненная и бедная смеси – это “голодная” пища для двигателя, в них топлива меньше нормы. Обогащенная и богатая смеси – слишком калорийная пища, так как топлива в них больше, чем надо. Вышеприведенной терминологии соответствует известные слова: “недоедание” и “голод” или “переедание” и “обжорство”. Если подумать о своем здоровье, то из четырех предложенных вариантов для постоянного рациона лучше выбрать легкое “недоедание”, чем три другие “убивающие” диеты.

Лекция 4

Тема лекции

Система питания бензинового двигателя

План лекции

4.1 Назначение системы питания карбюраторного двигателя. Общее устройство и работа системы питания.

4.2 Определение понятий «горючая смесь», «рабочая смесь», «состав горючей смеси», «коэффициент избытка воздуха».

4.3 Режимы работы двигателя и составы горючей смеси на этих режимах.

4.4 Системы впрыска бензина. Их преимущества по сравнению с карбюраторными системами питания.

4.5 Общее устройство и работа систем распределенного впрыска топлива.

Содержание лекции

4.1 Назначение системы питания карбюраторного двигателя. Общее устройство и работа системы питания

Система питания карбюраторного двигателя предназначена для приготовления в определенной пропорции из топлива и воздуха горючей смеси, подачи ее в цилиндры двигателя и отвода из них отработавших газов.

В систему питания двигателя автомобиля входят топливный бак, топливопроводы от бака к фильтру-отстойнику и к топливному насосу, карбюратор, воздушный фильтр, приемные трубы, глушитель, выпускная труба глушителя. В систему питания входят также фильтр тонкой очистки топлива, установленный между топливным насосом и карбюратором, впускной трубопровод, на котором укреплен карбюратор, и выпускной трубопровод.

Во время работы двигателя топливо из бака после предварительной очистки в фильтре-отстойнике насосом подается к карбюратору. При такте впуска в цилиндре двигателя создается разрежение, передающееся в карбюратор и в установленный на нем воздушный фильтр. Очищенный воздух проходит в смесительную камеру, где из жиклеров подается топливо. Испаряющееся топливо перемешивается с воздухом, образуя горючую смесь. Из карбюратора по впускному трубопроводу горючая смесь поступает в цилиндры двигателя. Газы, образовавшиеся после быстрого сгорания рабочей смеси в цилиндре, расширяются, давят на поршень, и он опускается вниз, совершая рабочий ход. После рабочего хода отработавшие газы через открытый выпускной клапан вытесняются поршнем в выпускной трубопровод. Затем они поступают в приемные трубы глушителя, выпускную трубу и в атмосферу. Топливо наливают в бак через горловину, закрываемую крышкой. Количество топлива, находящегося в баке, контролируют при помощи датчика и указателя уровня топлива. Принципиальная схема системы питания карбюраторного двигателя показана на рис. 4.1.

Рис. 4.1. Принципиальная схема системы питания карбюраторного автомобильного двигателя

1 – воздухоочиститель; 2 – глушитель шума впуска; 3 – карбюратор; 4 – впускной трубопровод;

Читайте также:
Масло Лукойл: подбор, отзывы, выбор синтетика или полусинтетика

5 – фильтр тонкой очистки топлива; 6 – топливный насос; 7 – топливопровод;

8 – топливный фильтр отстойник; 9 – топливный бак; 10 – глушитель шума выпуска

4.2 Определение понятий «горючая смесь», «рабочая смесь», «состав горючей смеси», «коэффициент избытка воздуха»

Смесь топлива с воздухом называется горючей смесью. Горючая смесь, попадая в цилиндр, смешивается с остаточными газами, которые не были удалены при такте выпуска. Образовавшаяся смесь называется рабочей.

Состав горючей смеси характеризуется определенным соотношением масс топлива и воздуха. Для полного сгорания 1 кг бензина теоретически необходимо 14,9 кг воздуха (обычно принимают 15 кг). Однако количество воздуха, действительно расходуемого на приготовление горючей смеси, может быть больше или меньше теоретически необходимого. Поэтому состав горючей смеси принято характеризовать коэффициентом избытка воздуха, обозначаемым буквой α. Коэффициент представляет собой отношение действительного количества воздуха Lд, участвующего в процессе сгорания бензина, к теоретически необходимому количеству воздуха Lт, т.е. α =Lд / Lт .

Если в сгорании 1 кг бензина действительно участвует 15 кг воздуха, т. е. столько, сколько теоретически необходимо, то α = 15/15 = 1, и такую смесь называют нормальной. Горючую смесь, для которой α 1 называют бедной, так как в ней содержится воздуха больше теоретически необходимого количества.

4.3 Режимы работы двигателя и составы горючей смеси на этих режимах

Основными режимами при работе автомобильного двигателя являются пуск двигателя, холостой ход и малые нагрузки, средние нагрузки, полные нагрузки, резкие переходы с малых нагрузок на большие. При пуске двигателя необходима очень богатая смесь (α = 0,2…0,6), так как частота вращения коленчатою вала мала, топливо плохо испаряется, а часть его конденсируется на холодных стенках цилиндра.

Работа двигателя в режимах холостого хода и малой нагрузке возможна при α = 0,7…0,8. Горючая смесь, поступающая в цилиндры двигателя, загрязняется остаточными газами, поэтому обогащение смеси улучшает ее воспламеняемость и способствует устойчивой работе двигателя.

Автомобильный двигатель большую часть времени работает при режиме средних нагрузок, т.е. с не полностью открытой дроссельной заслонкой. Для этого режима необходима обедненная смесь с коэффициентом избытка воздуха α = 1,05…1,15 (экономическая смесь), обеспечивающая экономичную работу двигателя.

4.4 Системы впрыска бензина. Их преимущества по сравнению с карбюраторными системами питания

Первые системы впрыска были механическими, а не электронными, и некоторые из них (например, высокоэффективная система BOSCH) были чрезвычайно остроумными и хорошо работали. Впервые же система механического впрыска топлива была разработана компанией Daimler Benz, а первый серийный автомобиль с впрыском бензина был выпущен еще в 1954 г. Основными преимуществами системы впрыска по сравнению с карбюраторными системами являются следующие:

— отсутствие дополнительного сопротивления потоку воздуха на впуске, имеющему место в карбюраторе, что обеспечивает повышение наполнения цилиндров и литровой мощности двигателя;

— более точное распределение топлива по отдельным цилиндрам;

— значительно более высокая степень оптимизации состава горючей смеси на всех режимах работы двигателя с учетом его состояния, что приводит к улучшению топливной экономичности и снижению токсичности отработавших газов.

Хотя в конце концов оказалось, что лучше для этой цели использовать электронику, которая дает возможность сделать систему компактнее, надежнее и более адаптируемой к требованиям различных двигателей. Некоторые из первых систем электронного впрыска представляли собой карбюратор, из которого удаляли все «пассивные» топливные системы и устанавливали одну или две форсунки. Такие системы получили название «центральный (одноточечный) впрыск».

В настоящее время наибольшее распространение получили системы распределенного (многоточечного) электронного впрыска. На изучении этих систем питания необходимо остановиться более подробно.

4.5 Общее устройство и работа систем распределенного впрыска топлива

В системе центрального впрыска подача смеси и ее распределение по цилиндрам осуществляются внутри впускного коллектора.

Устройство карбюратора простыми словами (на прим. Солекс)

Осторожно, длиннопост :) Много букф и много картинок.

Это преамбула ко второй части рассказа о том, как с карбюраторной системой на Audi 100 2.3 можно добиться практически схожих динамических характеристик родной системы впрыска.

Наверное, проще чем карбюратор, системы подачи топлива в природе просто нет, и учитывая это, наверняка найдутся люди, которым он еще кажется темной лошадкой. И прежде чем приступить к публикации моей второй части, хотелось бы рассказать максимально простым языком как работают все основные системы.

Аналогичным образом устроены и работают практически все карбюраторы, есть только небольшие различия в конструкциях. В этом посте я расскажу на примере карб. солекс, обладающим наиболее простой конструкцией.

Солекс — семейство карбюраторов имеющих практически одинаковую конструкцию всех систем, но отличающихся параметрами дозирующих элементов, а также некоторыми конструктивными особенностями.

Солексы в основном ставились на ВАЗ2108/09/099, ВАЗ-классику, Нивы-Тайги и некоторые другие.

Как и абсолютное большинство карбюраторов, он имеет 2 камеры, принцип работы которых установлен в соотношении 70 на 30. Грубо говоря, 70 процентов нажатия педали — двигатель работает только на первой камере, и при нажатии педали более чем на 70% — открывается вторая камера. У карба есть несколько систем, отвечающих за работу на разных режимах работы двигателя.

ОСНОВА НОМЕР ОДИН! Главный принцип. Бедная и богатая смесь.

Для полного сгорания 1 кг топлива требуется 15 кг воздуха.
Топливовоздушная смесь в такой пропорции называется нормальной. Режим работы двигателя на этой смеси имеет удовлетворительные показатели по экономичности и развиваемой мощности.

Незначительное увеличение количества воздуха в топливовоздушной смеси по сравнению с его нормальным содержанием (но не более 17 кг) приводит к обеднению смеси. На обедненной смеси двигатель работает в наиболее экономичном режиме, т.е. расход топлива на единицу развиваемой мощности минимален. Полную мощность на такой смеси двигатель не разовьет.

При избытке воздуха (17 кг и более) образуется бедная смесь. Двигатель на такой смеси работает неустойчиво, при этом расход топлива на единицу вырабатываемой мощности возрастает. На переобедненной смеси, содержащей более 19 кг воздуха на 1 кг топлива, работа двигателя невозможна, так как смесь не воспламеняется от искры.

Небольшой недостаток воздуха в топливовоздушной смеси по сравнению с нормальным (от 15 до 13 кг) способствует образованию обогащенной смеси. Такая смесь позволяет двигателю развивать максимальную мощность при несколько повышенном расходе топлива.

Читайте также:
Амортизаторы TRW: отзывы специалистов

Если воздуха в смеси меньше 13 кг на 1 кг топлива, смесь богатая. Из-за недостатка кислорода топливо сгорает не полностью. Двигатель на богатой смеси работает в неэкономичном режиме, с перебоями и при этом не развивает полной мощности. Переобогащенная смесь, содержащая менее 5 кг воздуха на 1 кг топлива, не воспламеняется — работа двигателя на ней невозможна.

Теперь перейдем к системам:

ПОПЛАВКОВАЯ КАМЕРА
Все просто.
Принцип унитазного бачка и думаю рассказывать о том, как работает бачок унитаза нет смысла. Главная цель — поддерживать заданный уровень топлива. Исполнительные механизмы — поплавки и затыкающая игла.

СИСТЕМА ХОЛОСТОГО ХОДА (ХХ) / ЭКОНОМАЙЗЕР ПРИНУДИТЕЛЬНОГО ХОЛОСТОГО ХОДА (ЭПХХ)
И на солексе система ХХ осложнена наличием электромагнитного клапана. Электромагнитный клапан иглой затыкает подачу топлива через жиклер ХХ в двух случаях:
1. Если выключено зажигание.
2. Если педаль газа отпущена, а на тахометре больше 1900 об/мин. Экономим бензин при спуске с горы, например.

Но на практике проблем от этой фигни больше, чем пользы. Поэтому если пропал холостой ход на солексе — 90% вероятность, что дело именно в этом. Жиклер ХХ имеет привычку забиваться какой-нибудь хренью, холостой ход при этом, естественно, пропадает. Но вся проблема решается за пару минут.

Можно просто откусить иглу кусачками, и тогда система ХХ превращается в принудительную. Кроме незначительно увеличившегося расхода топлива больше последствий не будет.

ГЛАВНАЯ ДОЗИРУЮЩАЯ СИСТЕМА (ГДС)
Она же самая сложная для быстрого понимания. Задача главной дозирующей системы — приготовить рабочую смесь для нормальной работы двигателя на основном режиме работы.

Главная дозирующая система состоит из топливных жиклеров первичной и вторичной камер карбюратора, воздушных жиклеров и эмульсионных трубок, трубок “вентури”, предназначенных для смешивания топлива с воздухом и приготовления рабочей смеси для нормальной работы двигателя.

Готовая смесь распыляется в СМЕСИТЕЛЬНОЙ камере.

Карбюраторный двигатель

Карбюраторный двигатель — это отдельный вид двигателя внутреннего сгорания (ДВС) с наружным формированием смеси. В карбюраторном двигателе внутреннего сгорания горючая смесь по коллектору проходит в цилиндры двигателя и вырабатывается в карбюраторе.

Карбюратор — конструкция в системе питания двигателей внутреннего сгорания, которая служит для перемешивания бензина с воздухом, образовывает горючую смесь и корректирует ее потребление. На сегодняшний день карбюраторные системы заменяются инжекторными.

Смесь представляет собой пары бензина смешанные с воздухом. Когда она проходит в цилиндры двигателя происходит перемешивание с отработанными газами и образование рабочей смеси, которая в конкретный момент поджигается системой зажигания. Поджигание смеси производится благодаря тому, что бензин поступает в газообразном виде и имеется достаточное количество воздуха для горения.

Карбюраторные двигатели подразделяются на четырехтактные и двухтактные. Рабочий цикл четырехтактного карбюраторного двигателя складывается из четырех тактов, они состоят из четырех полуоборотов коленчатого вала; двухтактные же состоят из двух полуоборотов коленчатого вала. Двухтактные двигатели наиболее легкие и получили свое применение в мотоциклах, мотокультиваторах, бензопилах и в других аппаратах.

Двигатели этого типа делятся на два подтипа:

  • Атмосферные, где рабочая смесь проходит благодаря разреживанию в цилиндре при вбирающем движении поршня;
  • Двигатели с наддувом. В них запуск горючей смеси в цилиндр осуществляется под воздействием давления, которое производится компрессором для расширения мощности двигателя. В различные времена использовались спирт, газ, керосин, бензин, но наиболее используемыми остались бензиновые и газовые двигатели.

Устройство карбюраторного двигателя

Общее устройство наиболее простого карбюратора заключает в себе поплавковую камеру с поплавком, жиклёр с распылителем, диффузор и дроссельную заслонку.

Если рассмотреть строение двигателя Л-12/4, то в блоке имеется четыре цилиндра. Вращение коленвала происходит на трех подшипниках. Центральный подшипник прикреплен к валу втулкой. На передней части вала прикрепляется маховик, который приводит в действие детали механизма и скапливает кинетическую энергию, она нужна для движения коленвала в период подготовительных тактов.

Смазка деталей происходит благодаря разбрызгиванию, шестеренчатый насос помогает началу движения распредвала и подает масло, которое разбрызгивается черпаками, происходит зажигание. Радиатор оснащен вентилятором, который служит для охлаждения воды.

На картере установлен сапун, который снижает давление благодаря выпуску газов.

Также имеется глушитель, который уменьшает шум от выхода отработанных газов. Количество оборотов коленчатого вала в автоматическом режиме устанавливает регулятор.

У двигателей ГАЗ-МК верхний отдел картера сделан из чугуна вместе с устройством цилиндров, которые охвачены водяной рубашкой и перекрыты головкой из чугуна, где и расположены камеры сгорания. Также имеются разъемы для свечей зажигания.

Водяная рубашка подсоединена к системе охлаждения. Низ двигателя затянут стальным поддоном, который выполняет функцию емкости для масла. Также там закреплен масляный насос, который приводит в движение распредвал.

Вращение коленчатого вала происходит также на трех подшипниках. Их вкладыши заполнены баббитом, где имеются смазочные канавки.

Чугунные крышки подшипников прикрепляются к блоку двумя болтами.

Передний сальник коленвала сделан из двух частей и представляет сердечник, который окружен платиной асбеста. Поршни сделаны из алюминия и скреплены шатуном полым стальным пальцем. Маховик прикреплен к коленвалу. Распредвал вращается на трех подшипниках и приводится в движение двумя шестернями.

Клапаны двигателя находятся справа. Система питания включает в себя бензобак, бензопроводы, отстойник, карбюратор и воздушный фильтр.

Бензобак находится выше карбюратора, поэтому топливо поступает самотеком.

Уровень масла в картере определяется специальным щупом. Охлаждение двигателя водяное. Радиатор размещен с задней стороны двигателя, водяной насос — с передней стороны. Вода, которая двигается по трубкам радиатора, остывает при помощи воздушного потока от вентилятора.

Принцип работы карбюраторного двигателя

Принцип действия карбюраторного двигателя относительно простой и складывается из четырех тактов, которые совпадают с движением вверх и вниз в последовательности один за одним:

  • Первый такт — впуск; клапан впуска отворяется и в цилиндр доставляется новая смесь от системы питания.
  • Второй такт — сжатие; поршень сдавливает горючую смесь в камере сгорания. Все клапаны прикрыты.
  • Третий такт — расширение; происходит возгорание сдавленной горючей смеси от свечи зажигания. Смесь сжигается достаточно быстро при неизменном объеме, который соответствует объему самой камеры сжатия. Это основная характерность работы карбюраторного двигателя. При перегорании формируются газы, которые двигают поршень книзу и передают движение коленвалу.
  • Четвертый такт — впрыск; коленвал вращается и выбрасывает из цилиндра отработанные газы через приоткрытый клапан выпуска.
Читайте также:
Лампы Osram H4 и H7: галогеновые и светодиодные

На этом один рабочий цикл карбюраторного двигателя заканчивается.

При первом такте клапан впуска уже в открытом виде при подходе поршня и благодаря высокой скорости движения поршня рабочая смесь продвигается к цилиндру и еще какое-то время при поднятии поршня во втором такте.

Искра поджигает рабочую смесь до того, как в цилиндре образуется высокое давление. В четвертом такте клапан выпускает отработанные испарения, чем очищает цилиндр еще до подхода поршня. Однако выход газов не прекращается даже после подхода поршня. Затем происходит запуск новой порции рабочей смеси, которая опять проходит в цилиндр.

Отсюда следует, что в работе между первым и четвертым тактом единовременно открываются клапаны впуска и выпуска, то есть происходит перекрытие клапанов. За момент перекрытия цилиндр очищается и в нем происходит разрежение, которое помогает выгоднее заполнить цилиндр горючей смесью при первом такте.

В таком двигателе происходит наружное образование рабочей смеси с ее сжатием и вынужденным поджиганием. На сегодняшний день как топливо чаще используется бензин, но они могут отлично выполнять свою работу и на газу.

Также популярны дизельные двигатели, где поджигание происходит от сжатия, их принцип работы зависит от нагревания газа при сжатии. Когда сжатие повышается, температура также поднимается. В это время в камеру сгорания через форсунку происходит впрыск топлива, которое поджигается и от полученных газов поршень передвигается. Сгорание топлива происходит после начала движения поршня.

Выше указан принцип работы одноцилиндрового двигателя, но он не способен создать условия непрерывного вращения с одинаковой скоростью. Расширенные газы оказывают действие на коленвал для его 1/4 части оборота, оставшиеся ¾ оборота движения поршня происходят по инерции.

Для ликвидации такой недоработки двигатели делают многоцилиндровыми, что способствует наиболее равномерному вращению и неизменному крутящему моменту.

Характеристики карбюраторного двигателя

Работа двигателя определяется его мощностью, действенным давлением, крутящим моментом, скоростью и частотой вращения коленчатого вала и потребление топлива.

Мощность карбюраторного двигателя, а также его крутящий момент подчиняются скорости вращения коленвала и высоты давления.

Скоростная характеристика карбюраторного двигателя устанавливается наивысшей мощностью, которую реально получить от давления при разной частоте вращения коленвала.

При небольшой скорости движения коленчатого вала давление в цилиндрах невысокое и мощность двигателя, соответственно, тоже небольшая. При ускорении вращения коленвала и давление поднимается, так как горючая смесь сгорает быстрее.

Потребление топлива увеличивается при небольшой частоте вращения коленчатого вала, так как процесс сгорания проходит медленнее, теплоотдача большая, а при увеличении частоты вращения механические и тепловые затраты увеличиваются.

Скоростная характеристика дизельного двигателя определяется при недвижимой рейке топливного насоса, который дает высокую подачу топлива на конкретном режиме скорости и бездымной эксплуатации.

При заведенном двигателе автомобиля количество вращений коленвала меняется. Если беспричинно увеличивается потребление топлива, то происходит это благодаря ухудшению рабочего процесса двигателя.

Управление карбюратором

Как правило, действиями карбюратора руководит водитель автомобиля. На отдельных моделях карбюраторов применялись вспомогательные системы, которые немного автоматизировали управление карбюратором.

Для того чтобы управлять дроссельной заслонкой наиболее часто пользуются педалью газа, которая обуславливает ее подвижность при содействии системы тяг либо тросового привода. Тяга, как правило, лучше, однако механизм привода куда сложнее и сдерживает способность механизма по компоновке подкапотной площади. Привод тягами был популярен до 1970 года, потом стали чаще использоваться тросики из металла.

На старых машинах чаще предполагалась двойная система привода дроссельной заслонки карбюратора: вручную рычагом либо от ноги, при помощи педали. Если надавливать на педаль, то рычаг не двигается, а если перемещать рычаг, то педаль опускается.

Последующее открытие дросселя можно совершать педалью. Когда педаль опускается — дроссель остается в таком же положении, в котором зафиксировался при управлении рукой. К примеру, на «Волге» ГАЗ-21 на панели приборов был размещен рычаг для управления рукой, при его движении можно достичь постоянного функционирования холодного двигателя без действия воздушной заслонки либо применять «постоянный газ». На грузовиках «постоянный газ» применялся для облегчения передвижения задним ходом.

Воздушная заслонка может быть оснащена механическим либо автоматическим приводом. Если привод механический, то водитель закрывает ее при участии рычага. Автоматический привод очень популярен в других странах, а в России не «прижился» из-за своей ненадежности и недолгим сроком службы.

Регулировки карбюратора

Карбюратор — устройство, которое имеет наименьшее количество регулировок, но нуждается в хорошо отлаженной системе. Неорганизованная эксплуатация карбюратора сильно действует на функциональность двигателя в целом. При плохой регулировке карбюратора снижается экономичность двигателя и повышается токсичность отработанного газа.

Подходящие виды регулирования карбюратора:

  • «Винт количества» — функционирование на холостом ходу;
  • «Винт качества» — насыщенность рабочей смеси (как результат, повышение токсичности выхлопных газов) на холостом ходу.

В период использования нужно прослеживать дееспособность нижеуказанных узлов:

  1. Действие клапана и схема холостого хода.
  2. Работа насоса (запаздывание действия, объем и время впрыска бензина).
  3. Размеренность работы, беспрепятственное движение, возврат пружиной и нужная степень открытия дроссельной заслонки.
  4. Действие холодного запуска (закрывание воздушной и степень открывания дроссельной и воздушной заслонок)
  5. Деятельность поплавковой конструкции (необходимое количество топлива в поплавковой камере, непроницаемость клапана).
  6. Пропускная возможность жиклеров.

На работоспособность карбюратора воздействуют:

  • Система регулирования карбюратора.
  • Установка пропуска воздуха (воздушный фильтр, обогрев воздуха).
  • Система подачи топлива (бензонасос, фильтры, заборники).
  • Трубка для слива излишков бензина.
  • Непроницаемость впускного канала, который расположен за карбюратором.
  • Нарушение клапанного устройства.
  • Качество топлива.

Устройство системы питания карбюраторных двигателей

Система питания двигателя автомобиля предназначена для подачи, очистки и хра­не­ния топлива, очистки воздуха, изготовления горючей смеси и пуска ее в цилиндры двигателя. Качество и объем этой смеси при различных рабочих режимах мотора должно быть разным, что также находится в компетенции системы питания двигателя. Так как мы будем рас­смат­ри­вать работу бензиновых моторов, в качестве топлива у нас всегда будет выступать бензин. В зависимости от типа устройства, выполняющего подготовку топливовоздушной смеси, си­ло­вые агрегаты могут быть карбюраторными, инжекторными или оборудованы мо­но­впрыс­ком. Для обеспечения экономичной и надежной работы мотора, бензин должен отличаться достаточной детонационной стойкостью и хорошей испаряемостью.

Читайте также:
Расход масла в двигателе: норма, какой расход моторного масла допустим

Детонацией ( см. детонация двигателя ) называется очень быстрое сгорание топлива, похожее на взрыв. Работа мотора с детонацией недопустима, т.к. сопровождается ударной нагрузкой на поршневые пальцы, коренные и шатунные подшипники, местным нагревом составляющих, дымным выпуском, прогоранием клапанов и поршней, увеличением топ­лив­но­го расхода, уменьшением мощности двигателя. На появление детонации также влияют нагрузка и скоростной режим мотора, опережение зажигания, нагарообразование на головке цилиндров и поршне ( см. работа поршня ) . Антидетонационные свойства бензинового топ­ли­ва оцениваются октановой величиной. Бензин сравнивают со смесью следующих топлив: изооктан, гептан. Гептан сильно детонирует – из-за этого для него октановое число условно принимают равное нулю. Второе топливо, изооктан, слабо детонирует – октановое число для него условно принимают в 100 единиц.

Октановым числом топлива является процентное количество изооктана в такой смеси с гептаном, которая по своей детонационной стойкости равноценна применяемому топливу. К примеру, если смесь, состоящая из 24% гептана и 76% изооктана (по объему), по де­то­на­ци­он­ным качествам соответствует проверяемому бензиновому топливу, то октановое число этого бензина будет равно 76. Чем больше октановое число топлива, тем выше его стойкость к детонации.

Система питания карбюраторного двигателя

Начнем с системы питания карбюраторного двигателя. Ранее мы выяснили, что в цилиндр поступает рабочая смесь (или образуется там), а после ее сгорания образовавшиеся там газы выводятся из него наружу. Теперь рассмотрим, как и за счет чего образуется рабочая смесь и куда выводятся продукты сгорания.

Принципиальная схема системы питания карбюраторного двигателя ( см. устройство двигателя автомобиля ) представлена ниже.

Составляющие системы питания карбюраторного двигателя:

  • топливный бак;
  • топливный насос;
  • топливопроводы;
  • фильтры очистки топлива;
  • воздушный фильтр;
  • инжектор или карбюратор.

Топливный бак – это металлическая емкость, способная вмещать от 40 до 80 литров, чаще всего монтируется в заднюю часть автомобиля ( см. топливный бак автомобиля ). Бен­зо­бак наполняется топливом через горловину, с предусмотренной трубкой для выхода воздуха в процессе заправки. Некоторые автомобили имеют бензобак, в нижней части которого на­хо­дит­ся сливное отверстие, позволяющее полностью очистить топливный бак от бензина и не­же­ла­тель­ных составляющих – мусора, воды.

Бензин, залитый в топливный бак автомобиля, проходит предварительно очистку через сетчатый фильтр, который установлен на топливозаборнике внутри бака. В бензобаке также находится датчик уровня топлива (специальный поплавок с реостатом), данные которого отображаются на щитке приборов.

Топливный насос отвечает за подачу топлива в систему впрыска, а также под­дер­жи­ва­ет необходимое рабочее давление в топливной системе ( см. топливный насос двигателя ). Данный механизм устанавливается в топливном баке и оснащен электрическим приводом. В случае необходимости может применяться дополнительный (подкачивающий) насос. В топливном баке вместе с топливным насосом устанавливается специальный датчик уровня топлива. В конструкции датчика лежит потенциометр и поплавок. Перемещение поплавка при изменении наполненности топливного бака приводит к изменению местоположения по­тен­ци­о­мет­ра. В свою очередь, это приводит к увеличению сопротивления в цепи и понижению нап­ря­же­ния на указатель топливного запаса.

Очистка поступающего топлива происходит в топливном фильтре. Современные ав­то­мо­би­ли имеют топливный фильтр со встроенным редукционным клапаном, который регулирует рабочее давление в топливной системе. Все излишки топлива по сливному топливопроводу отводятся от клапана. На силовых агрегатах с непосредственным топливным впрыском редукционный клапан не устанавливается в топливном фильтре.

Чтобы очистить топливо от различных механических примесей, используют фильтры тонкой и грубой очистки. Фильтры-отстойники, предназначенные для грубой очистки, выполняют отделение топлива от крупных механических примесей и воды. Фильтр-отстойник состоит из основного корпуса, фильтрующего элемента и отстойника. Фильтрующий элемент – это конструкция, собранная из тонких пластин, толщиной 0,14 мм. Эти пластины имеют отверстия и выступы величиной 0,05 мм. Комплект пластин установлен на стержень и с помощью пружины прижимается к корпусу. Собранные пластины имеют щели между собой, через которые проходит топливо. Вода и крупные механические примеси скапливаются на дне отстойника и через отверстие пробки удаляются.

Топливный фильтр системы топлива дизельных силовых агрегатов ( см. устройство дизельного двигателя ) имеет немного другую конструкцию, но суть работы остается ана­ло­гич­ной. С определенной периодичностью выполняется замена этого фильтра в сборе или исключительно в его фильтрующей составляющей.

Чтобы очистить топливо от мелких механических примесей, используют фильтры тонкой очистки. Данная разновидность фильтров состоит из основного корпуса, филь­тру­ю­ще­го керамического или сетчатого элемента и стакана-отстойника. Фильтрующий ке­ра­ми­чес­кий элемент – пористый материал, который обеспечивает лабиринтное движение топлива. Крепление фильтра – винт и скоба.

Топливопроводы соединяют приборы всей топливной системы и изготавливаются из латунных, стальных и медных трубок.

В системе питания двигателя топливо циркулирует по топливопроводам. Топ­ли­во­про­во­ды бывают подающие и сливные. В подающем топливопроводе поддерживается пос­то­ян­ное рабочее давление. По сливному топливопроводу все излишки топлива отходят в бак для топлива.

Воздушный фильтр предназначен для очистки от пыли поступающего в карбюратор воздуха. Пыль содержит мельчайшие кристаллики кварца, которые оседают на смазанных деталях, что в дальнейшем приводит к их износу. По способу очистки воздуха, воздушные фильтры делятся на сухие и инерционно-масляные. Инерционно-масляный фильтр в своей конструкции имеет корпус с масляной ванной, фильтрующий элемент, изготовленный из синтетического материала и воздухозаборник.

При работе мотора проходящий через кольцевую щель во внутренней части корпуса воздух соприкасается с масляной поверхностью и резко изменяет траекторию своего движения. В результате этого большие частицы пыли, находящиеся в воздухе, остаются на масляной поверхности. После этого воздух попадает в фильтрующий элемент, в котором происходит его очистка от мельчайших частичек пыли и попадает в карбюратор. Благодаря этой системе воздух проходит двойную очистку. При сильном засорении фильтр про­мы­ва­ет­ся.

Читайте также:
Не заводится Рено Сценик: причины и способы устранения неисправностей

Сухой воздушный фильтр состоит из корпуса, фильтрующего элемента из пористого картона и воздухозаборника. В случае необходимости фильтрующий элемент можно за­ме­нить.

Карбюратор ( см. устройство карбюратора ) – прибор, служащий для приготовления горючей смеси из воздуха и легкого жидкого топлива, для питания карбюраторных моторов. Распыляемое топливо в карбюраторе перемешивается с воздухом и затем подается в цилиндры.

Система питания инжекторного двигателя служит для образования топливно-воз­душ­ной смеси с помощью топливного впрыска.

Карбюратор

Представляет собой прибор, служащий для подготовки топливно-воздушной смеси надлежащего состава. Воздух перемешивается в карбюраторе с жидким топливом, например, с бензином в необходимых пропорциях, а затем поступает к цилиндрам ДВС. Такое смешивание заложено как основополагающий принцип действия карбюратора.

Сегодня существует множество вариантов конструктивного исполнения данного прибора. Но, наиболее востребованным остается поплавковый карбюратор. Работает по следующему принципу.

Бензин, нагнетаемый бензонасосом, поступает в поплавковую камеру карбюратора, в которой необходимый уровень горючего поддерживается при помощи специального поплавка и игольчатого клапана. Когда расход бензина увеличивается, поплавок меняет свое положение, одновременно приоткрывается клапан, и в поплавковую камеру поступает новая порция топлива.

После того, как бензин залит до необходимого уровня, поплавок всплывает, клапан закрывается, и через входное отверстие прекращается подача топливной жидкости. Если утрировать, то действие поплавковой камеры карбюратора максимально схоже с принципом работы сливного бачка унитаза.

По распылительной трубке горючее из поплавковой камеры проникает в смесительную камеру, где микшируется с поступившей из воздушного фильтра очищенной порцией воздуха.

Непосредственное смешивание происходит следующим образом. При первом движении поршня от верхней до нижней мертвой точки клапан находится в открытом положении. При перемещении поршня вниз происходит всасывание очередной порции воздуха, которая пропускается через фильтр.

Затем при помощи диффузора движение воздуха значительно увеличивается, происходит его «закручивание», которое позволяет «зацепить» бензин из распылителя, при этом активно с ним перемешаться. При последующем движении поршня эта смесь через открытый клапан впуска проникает к цилиндрам. Все это происходит в смесительной камере, которая на языке автослесарей называется «кухней» карбюратора.

Количество горючего, поставляемого к цилиндрам, регулируется установленной дроссельной заслонкой, которая механически связана с педалью газа. Когда водитель нажимает на педаль, открывается заслонка, увеличивается содержание топливно-воздушной смеси, попадающей к цилиндрам, двигатель, соответственно, набирает обороты.

В случае отпускания педали происходит закрывание дроссельной заслонки, а значит, содержание смеси значительно снижается. В этом случае двигатель сбрасывает обороты.

Стоит отметить, что уровень бензина в поплавковой камере расположен ниже маркера выходного отверстия распылителя. Именно это предотвращает риск протекания топливной смеси при неработающем двигателе, даже если автомобиль находится наклонно.

Современные конструкции карбюраторов способны обеспечивать создание топливно-воздушной смеси в правильных пропорциях при всех рабочих режимах двигателя, что обеспечивает максимально корректную его работу.

Работа системы питания двигателя

Если вкратце рассмотреть работу системы питания двигателя, то выглядит она сле­ду­ю­щим образом.

Топливо (в данном случае бензин) за счет разрежения воздуха, создаваемого в системе при движении поршня от ВМТ к НМТ, а также с помощью топливного насоса, поступает в карбюратор автомобиля, проходя через фильтры. Топливный насос подает бензин из бака. Топливные насосы подразделяются на электрические и механические. Механические топ­лив­ные насосы устанавливаются на автомобилях с карбюраторными силовыми агрегатами. Автомобили, оборудованные электронным впрыском, оснащены электрическим насосом. В карбюраторе пары бензина смешиваюется с поступающим воздухом, образуя топливно-воздушную смесь, которая и направляется в цилиндр. После совершения рабочего цикла (сгорания смеси), поршень, двигаясь вверх, выдавливает отработавшие газы через выпускной клапан, которые в конечном итоге выпускаются в атмосферу.

Работа системы питания двигателя с системой впрыска (инжекторной) происходит аналогичным образом.

Рабочие режимы системы питания двигателя

В зависимости от дорожных условий и целей водитель может использовать разные режимы езды. Им соответствуют и определенные рабочие режимы системы питания двигателя, каждому из которых принадлежит топливно-воздушная смесь особого состава. Для каждого режима работа системы питания двигателя будет иметь свои особенности.

  1. Качество смеси будет богатым при запуске холодного мотора. Потребление воздуха при этом минимальное. В данном режиме возможность движения категорически ис­клю­ча­ет­ся. В противном случае это вызовет повышенное потребление топлива и износ деталей двигателя.
  2. Состав смеси будет достаточно обогащенным при использовании «холостого хода», который применяется во время движения «накатом» или работе включенного мотора в прогретом состоянии.
  3. Состав смеси будет обедненным при передвижении с частичными нагрузками.
  4. Состав смеси также будет обогащенным в режиме полных нагрузок при езде на вы­со­кой скорости.
  5. Состав смести будет обогащенным, максимально приближенным к богатому, при езде в условиях резкого ускорения.

Выбор рабочих условий системы питания двигателя должен быть оправдан пот­реб­ностью движения в определенном режиме.

Основы топливной системы

Схема системы питания карбюраторного двигателя построена на следующих основных действиях:

  • подача горючего;
  • фильтрация его и последующее складирование;
  • воздухоочистка;
  • подготовка топливно-воздушной смеси;
  • запуск состава в цилиндры мотора

Система поступления и циркуляции топлива напрямую реагирует на качественную и количественную составляющую поступаемого бензина в проекции рабочих режимов ДВС.

Классический вариант топливной системы включает такие составляющие компоненты, как:

  • бак с горючим (хранение бензина);
  • топливный насос (образование необходимого давления, подача горючего в принудительном порядке);
  • топливопровод (совокупность трубок, магистралей, шлангов для циркуляции топливной смеси);
  • фильтры (воздушный и топливные);
  • карбюратор (подготовка и образование топливно-воздушного состава)

Принцип работы системы питания для карбюраторных двигателей достаточно простой. Топливо, содержащееся в емкости, на старте своей циркуляции подвергается фильтрации. Одновременно в работу вступает топливный насос, заставляющий бензин двигаться по топливной магистрали к карбюратору. Там начинается приготовление топливно-воздушного состава необходимых пропорций, только после этого она попадает к рабочим цилиндрам ДВС.

Далее более подробно будут рассматриваться устройство и эксплуатационные показатели каждого элемента системы топлива карбюраторного мотора.

Принцип работы турбины на бензиновом и дизельном двигателе

Принцип работы турбины дизельного двигателя основан на увеличении количества воздуха, смешиваемого с топливом и поступающего в камеру сгорания. За один и тот же период времени и при равных объемах цилиндров, двигатель с турбонаддувом может сжечь большее количество топлива, чем движок, не оснащенный таким устройством. А значит, его мощность и КПД в единицу времени значительно возрастет.

Читайте также:
Фаркоп на Рено Сандеро своими руками

Рассмотрим устройство турбины дизельного двигателя, как работает, и каким образом достигаются такие показатели.

Конструктивные элементы системы

Для осуществления возложенных функций, система турбонаддува состоит из двух основных частей:

  1. Компрессор;
  2. Турбина.

Компрессор служит для нагнетания атмосферного воздуха в систему подачи топлива. Он состоит из корпуса и расположенной в нем крыльчатки, которая, вращаясь, всасывает воздух. Чем выше ее скорость вращения, тем больше объем принятого воздуха. Увеличению скорости способствует работа турбины.

Она также состоит из корпуса с крыльчаткой (ротором), которая приводится в движение выхлопными газами. В корпусе газы проходят через специальный канал, имеющий форму улитки, что позволяет им увеличить скорость.

Преимущества и недостатки турбонаддува

1
. Турбокомпрессор широко используется ввиду простоты конструкции и хороших эксплуатационных параметров. Турбонаддув позволяет увеличить мощность двигателя на 20-35%. Двигатель, вырабатывая повышенные крутящие моменты на средних и высоких оборотах, увеличивает скорость и экономичность автомобиля.
2
. Турбокомпрессор в большинстве случаев не может быть причиной неисправностей двигателя, так как его работа зависит от работоспособности газораспределительной, воздушной и топливной систем.
3
. Двигатель с турбокомпрессором имеет меньший выброс вредных газов в атмосферу, так как вырабатываются дополнительные выхлопные газы в двигатель. У сгораемого топлива становится меньше отходов.
4
. Происходит экономия топлива на 5-20%. В небольших двигателях энергия сжигаемого топлива используется эффективней, увеличивается КПД.
5
. На высокогорных дорогах такие двигатели работают более стабильно и с меньшими потерями мощности, чем их атмосферные аналоги.
6
. Турбокомпрессор сам по себе является глушителем шума в системе выпуска.

Как работает турбонаддув дизельного двигателя

Ротор турбины и крыльчатка компрессора жестко закреплены на одном валу. Таким образом, скорость вращения ротора передается крыльчатке. Круг замыкается:

  • Через компрессор воздух из атмосферы, смешиваясь с топливом, подается в цилиндры двигателя;
  • Смесь сгорает, приводя в движение поршни, и образовавшиеся в результате газы поступают в выпускной коллектор;
  • Здесь они принимаются в корпус турбины, разгоняются в канале и на выходе взаимодействуют с ротором, заставляя его вращаться;
  • Ротор через вал передает вращение крыльчатке компрессора, которая всасывает в корпус атмосферный воздух.

Получается взаимосвязанная схема работы, когда количество всасываемого воздуха зависит от скорости вращения крыльчатки и, наоборот, крыльчатка вращается быстрее при большем количестве забираемого воздуха.

Принцип работы турбонаддува имеет два момента, называемые турбоямой и турбоподхватом.

Первый момент характеризуется задержкой в работе турбины после увеличения подачи топлива нажатием на педаль газа, так как для разгона ротора выхлопными газами требуется время.

Вслед за турбоямой наступает момент турбоподхвата, когда разогнавшийся ротор резко увеличивает подачу воздуха в цилиндры, повышая мощность двигателя.

Дизельный двигатель, относящийся к категории двигателей внутреннего сгорания, был изобретён в феврале месяце 1893 года в Германии инженером Рудольфом Дизелем.

С момента изобретения двигатель постоянно усовершенствовался, менялись виды топлива, способы его подачи, баланс топливной смеси и т.д.

Собранные по классической схеме двигатели, используют принцип превышения атмосферного давления над давлением, создающимся в цилиндре в момент движения поршня к нижней мёртвой точке. Однако за счёт незначительного времени затраченного на выполнения этого действия и небольшого перечного сечения воздухоподводящего канала поступающего воздуха недостаточно для полного сгорания топливной смеси.

Позже на Родине Рудольфа Дизеля нашли способ решения данной проблемы. Воздух в цилиндры должен подаваться под избыточным давлением! Это основной принцип работы турбины на дизельном двигателе

Для этой цели было разработано специальное устройство, совмещающее в себе свойства вентилятора и компрессора. Это устройство приводилось в движение непосредственно от коленчатого вала двигателя, что снижало коэффициент полезного действия всей конструкции в целом.

Следующим усовершенствованием системы подачи воздуха стала установка в качестве привода для компрессора специальной турбины, которая приводилась во вращение за счёт использования энергии потока использованных выхлопных газов. Однако при работе двигателя на малых оборотах, воздуха подаваемого в цилиндры компрессором было недостаточно для полноценной работы дизеля. Вскоре и этот вопрос был решён путём установки двух турбин различного диаметра и приводимых во вращение выхлопными газами, забираемыми из разных частей выпускного тракта. Турбина меньшего диаметра разгонялась быстрее и обеспечивала работу двигателя на малых оборотах, а большая турбина работала при больших оборотах двигателя, что качественно изменило принципы работы турбины на дизельном двигателе.

В настоящее время устройства, предназначенные для подачи воздуха в цилиндры дизельного двигателя под избыточным давлением, называются турбокомпрессорами, а сам процесс подачи турбонаддувом.

Современный турбокомпрессор состоит из следующих составных частей:

  • Двух кожухов, в каждом из которых соответственно находятся компрессор и турбина, кожух сделан из жаропрочного чугуна, колесо турбины из жаропрочного сплава;
  • Корпуса подшипников, через который проходит, закреплённый на подшипниках скольжения отлитых из специальной бронзы, вал соединяющий колесо компрессора и ротор турбины;
  • Подшипников, выполняющих роль внутренней опоры для всей конструкции. Турбина и компрессор застопорены упорным подшипником и жестко соединены непосредственно с осью;
  • Для защиты турбокомпрессора от попадания посторонних предметов, входное отверстие для воздуха защищено стальной сеткой

Работает турбокомпрессор следующим образом. Выхлопные газы отводимые от выпускного коллектора дизеля направляются в приемный патрубок турбокомпрессора. Проходят по каналу корпуса турбины, который постепенно уменьшается в сечении, а газы увеличивают скорость и воздействуя на ротор заставляют вращаться турбину. Число оборотов турбины зависит от многих факторов: конфигурации канала, его формы, сечения и т.д. Турбина вращается со скоростью около1500 об/сек, её размеры подбираются в зависимости от типа двигателя.

Наружный воздух, проходя через фильтрующий элемент, очищается от пыли и других посторонних примесей и в сжатом состоянии попадает во впускной коллектор дизеля. После этого происходит закрытие впускного канала, дополнительное сжатие топливной смеси и её воспламенение. В завершении рабочего цикла открывается выпускной коллектор.

Поскольку уходящие выхлопные газы имеют температуру около 800° – 900° С, турбокомпрессор имеет систему охлаждения, радиатором которой является корпус подшипника. Изготавливаемый из сплавов алюминия корпус снабжен штуцерами, через которые подводится холодное масло и отводится нагретое в процессе работы турбокомпрессора.

Читайте также:
Lada Vesta: ремонт своими руками, фото и видео, отзывы

При работе турбокомпрессора, за счёт сжатия и увеличения внутренней силы трения воздух, нагнетаемый в цилиндры дизеля подогревается до температуры около 170°С. Во время охлаждения воздух «сгущается», то есть увеличивается, его плотность и соответственно взрастает, объём подаваемого воздуха. Подача в двигатель охлаждённого воздуха положительно влияет на повышение мощности дизеля, что в свою очередь снижает потребление топлива, уменьшает отрицательное воздействие на окружающую среду.

Турбокомпрессорные двигатели имеют перед обычными двигателями определённые преимущества:

  • При одних и тех же энергозатратах расход топлива меньше, поскольку часть энергии выхлопных газов, раскручивая турбокомпрессор, подавая большее количество воздуха в цилиндры двигателя, увеличивает его мощность.
  • Двигатели с турбокомпрессорами имеют меньший наружный объём и соответственно меньшие потери нагрева.
  • За счёт относительно небольшого веса на 1Л.С. мощности снижается расход металла на сам двигатель и конструкцию, на которой он установлен.
  • Также меньше объём отсека, в который может быть установлен турбодвигатель.
  • За счёт малого числа оборотов при номинальной мощности турбодвигатели обладают лучшими нагрузочными характеристиками.
  • В условиях разряженного воздуха, за счёт высокого давления развиваемого турбокомпрессором и низкого внешнего давления турбодвигатель имеет огромные преимущества в сравнении с обычным двигателем, поскольку мощность его практически не теряется.
  • турбодвигатель за счёт малых размеров имеет меньшую звукоизлучающую поверхность, а турбокомпрессор работает как дополнительный глушитель.

Имеет турбонаддув и свои недостатки – это заметная задержка набора мощности при резком нажатии на педаль акселератора. Такое случается в связи с тем, что отсутствует механическая связь коленчатого вала и турбины Мощность начинает расти, когда турбина раскрутится выхлопными газами. Хотя подобное явление в той или иной степени наблюдается у любого двигателя.

Основное применение дизельные двигатели с турбонаддувом нашли на автомобилях большой грузоподъёмности, работающих с полной нагрузкой.

Регулировка давления наддува

Турбонаддув дизельного двигателя повышает его мощность за счет возрастания давления выхлопных газов, являющихся результатом увеличения числа оборотов и интенсивности работы мотора. Этот же процесс повышает давление наддува. Если его не регулировать, то на самых высоких оборотах оно может достичь опасных значений, приводящих к поломкам и механическим повреждениям.

Регулировка давления производится с помощью выпускного предохранительного клапана, а контроль максимально допустимого значения — с помощью мембраны и пружины определенной жесткости.

Суть работы: при достижении предельного значения давления, мембрана, установленная в корпусе компрессора, преодолевает воздействие пружины и открывает регулировочный клапан.

Давление регулируют как на стороне компрессора, так и на стороне турбины:

  1. Работающий турбокомпрессор сбрасывает в атмосферу через выпускной клапан излишки забранного воздуха, тем самым снижая давление.
  2. В турбине клапан выпускает отработанные газы под воздействием мембраны компрессора, когда давление всасываемого воздуха достигает максимального уровня. Благодаря этому, ротор вращается с установленной скоростью, а компрессор не забирает лишний воздух и не увеличивает давление.

Второй вариант расположения клапана позволяет изготавливать системы меньших габаритов. Кроме того, турбонагнетатель с клапаном в компрессоре подвержен чрезмерному нагреву из-за повышенной температуры выпускаемого воздуха, что негативно сказывается на эффективности его работы.

Поэтому турбонаддув дизельного двигателя чаще оснащают регулировочным клапаном в турбине, а регулировку в компрессоре используют в качестве дополнения.

Система смазки

Смазка вала турбонагнетателя осуществляется смазочной системой двигателя.

На вал устанавливают уплотнительные кольца, предотвращающие проникновение масла в полости корпусов компрессора и турбины. Они же предохраняют корпуса от перегрева. Но герметичность обеспечивается не столько уплотнениями, сколько разностью величины давления в различных частях агрегата. Эту разницу давлений создает турбинная ось (вал), имеющая неравномерный диаметр.

Особая форма литья корпуса, в котором расположен вал, также способствует удержанию масла.

Если мотор не развивает требуемую мощность, это может быть симптомом неисправности турбонаддува. Наиболее часто встречающиеся проблемы — загрязнение воздушного фильтра или потеря герметичности впускного коллектора. Кроме потери мощности, их можно диагностировать по несвойственному для исправной машины цвету и количеству дыма, выходящего из выхлопной трубы.

Особенности проверки турбины в дизеле

Диагностика турбины должна осуществляться опытными мастерами на СТО, где есть высокоточное профессиональное оборудование, инструменты и прочие приспособления. Однако, попасть быстро к специалистам получается далеко не всегда. В такой ситуации можно осмелиться осуществить самостоятельную проверку.

Визуальный осмотр автомобиля зачастую бывает достаточным для того, чтобы определить наиболее распространенные типы поломок. Особое внимание стоит уделить цвету выхлопов:

  • белый дым – свидетельство о нарушении проходимости воздушных каналов либо маслопровода
  • выхлопы с копотью – говорят об утечке в области механизмов для подачи воздуха
  • сизый дым – признак протекания масла в турбине.

Второй этап проверки проводится после прогревания мотора. При резком включении и выключении мотора нужно подержать патрубок. Если наблюдается вздутие последнего из-за накопления воздуха, то турбина в порядке. В обратном случае — нужен ремонт.

Состояние турбокомпрессора может красноречиво свидетельствовать о наличии неполадок. Масляные следы, пятна, влага на корпусе или узлах – эти «симптомы» также являются признаками проблем. При их обнаружении стоит обратиться в СТО для более детальной диагностики, а также оперативной и эффективной ликвидации неисправностей.

Недостатки турбокомпрессоров

Принцип работы турбины на дизельном двигателе создает и негативные факторы:

  • Повышенный расход горючего. Возможность сжечь большее количество солярки за счет увеличенного объема подачи воздуха, вместе с мощностью повышает и «прожорливость» машины. Уменьшить аппетит до разумных пределов позволяет правильная регулировка системы.
  • Положительные стороны наддува приводят к многократному повышению температуры во время такта сжатия, что может вызвать детонацию в двигателе. Решается эта проблема установкой охладителей, регуляторов и прочих элементов.

Правила эксплуатации

Чтобы в полной мере использовать ресурс турбины дизельного мотора и продлить ее срок службы, необходимо выполнять ряд условий:

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: