Варианты и классы дизельных двигателей: типы и классификация

Классы дизельных двигателей

Двигатель автомобиля не зря называют его сердцем. Именно от этого агрегата зависит абсолютное большинство характеристик машины, ее долговечность и способность работать в тех или иных климатических условиях. Одним из вариантов конструкции двигателя является дизель. От бензиновых собратьев он отличается не только типом применяемого топлива, но и некоторыми конструктивными отличиями. Сегодня мы затронем вопрос о разновидностях дизельных моторов и тех особенностях, которые таят в себе подобные силовые агрегаты.

Конструктивные особенности

Дизельный двигатель был изобретен и сконструирован намного позднее бензинового. Необходимость создания альтернативы агрегатам, работающим на бензиновом топливе, заключалась в чрезмерной прожорливости подобных двигателей и слишком небольшому их ресурсу. В-основном, в начале столетия функционировала промышленная техника, которая была не требовательна к динамическим качествам моторов, но взамен ей был необходим максимальный ресурс и износостойкость всех агрегатов и деталей.

Появившись на рынке, дизельный двигатель сразу же себя зарекомендовал. Помимо высокого ресурса и неплохой надежности, данный тип двигателя демонстрирует высокий КПД. Этот факт привел к тому, что дизельный мотор оказался намного экономичнее, чем его бензиновый собрат.

Правда, без недостатков тоже не обошлось. По этой причине, на данный момент на рынке в качестве двух альтернатив присутствуют и бензиновые, и дизельные моторы. Дизельный двигатель, к большому сожалению, крайне чувствителен к качеству топлива. Если солярка оказалась некачественной, то владелец вынужден будет пойти на капитальный ремонт двигателя и колоссальные затраты, что никак не может радовать. Кроме того, дизель шумнее, и его вибрация иногда доставляет большой дискомфорт.

Так в чем же особенности работы дизеля? Чем он отличается от классического бензинового двигателя? Если открыть книги с чертежами и изучить большое количество научных трудов, то становится ясно, что особенностей конструкции не так уж и много. Основной секрет эффективности дизеля кроется в применении несколько иных физических законов.

Так, многие знают, что бензиновые двигатели внутреннего сгорания всех классов и разновидностей основывают свою работу на том, что пары бензина, смешиваясь с воздухом в нужной пропорции, поступают в камеру сгорания, воспламеняются и за счет расширения толкают поршень.

В бензиновом агрегате разжечь топливную смесь достаточно просто, для этого необходимо всего лишь подать искру на электрическую свечу. Однако дизельное топливо таким образом разжечь не удастся. Его особенность состоит в способности гореть лишь при сильном повышении давления и температуры окружающей среды. Именно поэтому в системах ДВС дизельного типа применяются свечи накала, которые способны разогревать свои электроды до 800 градусов по Цельсию, а топливный насос высокого давления обеспечивает мощную струю топлива, подаваемую на форсунки.

Таким образом, дизельный мотор работает не за счет воспламенения смеси искрой, а при помощи ее мощного нагрева и, таким образом, сжатия. Это способствует высокому КПД и более устойчивой и долговременной работе в любом эксплуатационном режиме.

Основные разновидности

Чтобы раз и навсегда запомнить, какие в настоящий момент существуют типы дизельных двигателей и понять их классификацию, не нужно прибегать к зубрежке или изучать большое количество заумной литературы.

Это ни к чему, потому что на данный момент изобретено лишь два вида дизелей, которые различаются друг от друга и своей конструкцией, и принципом работы.

Самый старый и примитивный тип дизельного двигателя имеет неразделенную камеру сгорания. Что это означает?

Чтобы ответить на этот вопрос, стоит понять принцип работы мотора подобного типа. Топливного насоса высокого давления здесь нет, вместо него функционирует насос, схожий по принципу работы с бензиновым. Топливо напрямую поступает в форсунки, которые имеют электронное управление. Попутно, при помощи специальной заслонки, в смесь всасывается воздух в необходимой пропорции.

Таким образом, топливная смесь напрямую попадает в камеру сгорания и воспламеняется уже в ней. Поршень движется и приводит в движение коленчатый вал и колеса.

Современный тип, который в настоящее время нашел самое широкое применение, имеет разделенную камеру сгорания. Здесь основную камеру предваряет вихревая. Ее особенность в том, что здесь обеспечивается вихревой ток смеси сквозь камеры и, таким образом, более равномерное распределение энергии горения. Смесь начинает гореть уже в вихревой камере и, затем, постепенно переходит в основную. Это способствует улучшенным характеристикам и большей экономичности, что говорит об относительном совершенстве современной дизельной конструкции.

Подводя итоги

В настоящее время дизельные двигатели находят широкое применение в современной автомобильной технике. Они отличаются не только высоким ресурсом работы, но также и экономичностью, что очень важно для всех отраслей промышленности. Зная конструкцию дизеля, можно ответить на все вопросы, касающиеся особенностей данных агрегатов, а также научиться самостоятельно определять неисправности, которые могут возникнуть с течением эксплуатации.

Виды автомобильных двигателей

Традиционно тип двигателя автомобиля современного авто, работающего на жидком топливе, дифференцируют по виду потребляемого горючего: бензин или дизель. Кроме простых, однотопливных силовых установок, еще есть версии с ГБО, в ходе работы, переключающиеся между потреблением бензина и сжиженного газа, а также гибридные – где относительно маленький ДВС приводит в действие мощный электрический генератор, вращающий колеса. Кроме привычных нам моторов с рядным, двухрядным (поперечным или продольным), оппозитным, L‐ или V‐образным расположением цилиндров, существуют ДВС вообще без цилиндров, и даже без обычного коленвала. Разберем, что такое тип двигателя, по какому принципу проводится различие и почему часто происходит путаница в типах, классах и названиях.

Типы ДВС

Конструкция автомобильных двигателей внутреннего сгорания, их компоновка, и сами составляющие – диктуются принципом, по которому они извлекают тепловую энергию сжигания топлива и трансформируют ее в крутящий момент, передаваемый трансмиссии. Как уже было сказано, есть два основных типа двигателей: бензиновый и дизельный, работающие по известным многим термодинамическим циклам: Отто, и (как не странно – не Дизеля) — Тринклера‐Сабатэ.

Первый цикл подразумевает подвод к камере сгорания независимого источника воспламенения топливной смеси (искры), второй — нет. Существенное отличие между этими типами моторов — наличие системы зажигания. Бензиновый — оборудован управляемым искровым зажиганием, а дизельный — не требует никакого дополнительного оборудования. Топливо в нем загорается само, достигая высокой температуры от резкого сжатия под большим давлением.

Кроме одноименного горючего, «бензиновый» мотор может работать на сжиженном газе, спирте, высокооктановой смеси спиртов и бензина, смеси бензина и закиси азота. Дизельный двигатель – на менее калорийный, кроме солярки, может работать на рапсовом или даже подсолнечном масле, смеси мазута с керосином, разных продуктах нефтеперегонки, вплоть до сырой нефти (в теории, на современных авто – не применяется).

Читайте также:
Смазка Castrol LMX LI Komplexfett: характеристики

Классификация ДВС: варианты

Рядный, V-образный, VR-образный, U-образный, поперечный, продольный, роторный, «звезда» и еще с десяток наименований – это не «тип», а конфигурация, компоновка частей поршневого ДВС, относящегося к бензиновым (газовым), или дизельным. Разделение по количеству цилиндров и их расположению часто называют «архитектурой». Сейчас конфигурацией пользуются как основным критерием, потому, что самое массовое применение в мировом автопроме имеют поршневые движки с возвратно‐поступательным принципом работы, включающие привычный набор: цилиндр‐головка‐поршень‐шатун‐коленвал. Исключение — РПД, но о них поговорим отдельно.

Классический V-образный 6-ти цилиндровый (DTM Rennmotor 1996) двигатель Мерседес

Другие критерии, по которым двигатели можно классифицировать:

  • Тактность — 2Т, 4Т.
  • Способ смесеобразования — карбюраторные, инжекторные, впрысковые.
  • Рабочий объем (куб. см).
  • Тип ГРМ — клапанный, поршневой, золотниковый.
  • Количество клапанов на цилиндр.
  • Система охлаждения — воздушное, воздушно‐масляное, жидкостное.
  • Наличие и количество распредвалов — одновальный, двухвальный.
  • Наличие или отсутствие принудительной подачи воздуха — турбированные или атмосферные.
  • Конструкция привода ГРМ — ременной, цепной, штанговый, шестеренчатый.
  • Расположение относительно оси движения машины — продольное, или поперечное.

Во всех поршневых ДВС обязательно есть: камера сгорания, поршень, цилиндр (или заменяющий его объем, в котором поршень перемещается) и вал передачи крутящего момента, который вырабатывается этим смещением поршня.

Какой формы будет этот вал – коленчатый (как в большинстве моторов авто), аксиальный, или просто центральный ротор, а также количество, форма, расположение цилиндров, схема системы газораспределения и питания — все это определяется механическим принципом, который человек сконструировавший этот двигатель, взял за основу.

Виды двигателей внутреннего сгорания по принципу работы:

  • Возвратно‐поступательные — в которых линейные движения поршня в цилиндре кривошипный механизм трансформирует во вращение коленвала.
  • Роторные – где камера сгорания подвижна, и давление сгорающего топлива сразу же придает эксцентриковому валу (ротору) вращательное движение.
  • Аксиальные — где, вместо коленвала, нижняя шейка шатунов интегрирована в качающуюся звездообразную шайбу, за счет эксцентрика раскручивающую центральный вал.
  • Свободнопоршневые (прототипы) – в которых два оппозитно направленных поршня, с отдельной для каждого камерой сгорания, закреплены на одном штоке. Вращение тут исключено в принципе, и работа составляет только осевое (вправо-влево) перемещение штока, являющегося якорем электрогенератора.

Разновидности двигателей внутреннего сгорания двухтактного и четырехтактного типа

Большинство силовых установок на современных машинах относятся к четырехтактным. Двухтактные можно встретить намного реже. В двухтактниках – рабочий цикл (все 4 фазы – впуск, сжатие, рабочий ход и выпуск) приходится на всего два хода поршня между ВМТ и НМТ (верхней и нижней мертвой точкой), на один оборот коленвала. В четырехтактниках – движение происходит на каждый этап, 4 раза (вниз-вверх, вниз-вверх), 2 оборота «колена».

Схема работы 4‐х тактного двигателя

Двухтактный цикл позволяет сделать двигатель менее оборотистым и в 1,5 раза более мощным, чем такой же по объему четырехтактный, но ценой экономичности (от 15 до 30%) и большей токсичности выхлопа из-за необходимости добавлять масло непосредственно в горючее. В четырехтактном – сгорание смеси происходит более полно, исключая потери части топливной смеси, вылетающей в выпускной тракт, однако, большой процент выдаваемого крутящего момента уходит на компенсацию тепловых и мощностных потерь от вдвое большего количества ходов поршня (и необходимости тормозить-разгонять значимую массу в ЦПГ).

В итоге «экологичность» и экономичность, все же, «победили», и бензиновые двухтактники (к тому же, требовавшие более интенсивного теплоотвода) в массовом производстве силовых установок для легковушек и грузовиков уступили место четырехтактникам. А вот в танкостроении и авиации, где с потерями масла и экономичностью считаться не принято, наоборот – двигатель 2Т типа «прижился» хорошо.

Все знают, что двух и четырехтактными бывают бензиновые моторы, а четырехтактными – дизели, но не все знают, что на самом деле двухтактный дизель тоже существует. Разработанный больше 120 лет назад, он спроектирован по схеме встречного движения двух поршней в одном цилиндре. Их верхушки в ВМТ создают одну общую камеру сгорания, воспламенение смеси – тоже «одно на двоих». Двигаясь в противоположных направлениях, поршни толкают каждый свой коленвал, тем самым компенсируя вибрации друг друга. Интересно, что подобная схема допускает создание как дизельного, так и бензинового мотора: бензиновый вариант такого «оппозита» раньше устанавливался на немецкие самолеты Юнкерс, а сегодня – усовершенствованный вариант двухтактного дизеля применяется в тепловозах серий ТЭ3 и ТЭ10, в танках (движки 5ТДФ и 6ТД), на малых судах.

2‐х тактный 4‐х цилиндровый двигатель ЯАЗ−204

Двигатель с искровым зажиганием (бензиновый, или с ГБО): самый массовый

Чтобы поджечь топливовоздушную смесь (не важно, газ это, или жидкость) эти ДВС генерируют высоковольтный искровой разряд от внешнего электрооборудования. Схематически: ток от генератора через прерыватель идет к каждому цилиндру, повышается на его катушке, пробивает зазор между электродами свечи, поджигает смесь, уходя на массу (корпус). Для питания такой системы горючим применяют простую, но более архаичную и неэкономичную — карбюраторную схему, либо усовершенствованную — инжекторную систему подачи топлива.

Читайте также:
Стоп-сигнал: задний светодиодный, габариты

Карбюраторный

Топливовоздушная смесь готовится для него в отдельном устройстве, на входе во впускной канал (каждого цилиндра индивидуально, или общего впускного коллектора для нескольких). Упрощенно, карбюратор – это закрытый «стакан» с соломинкой, верхушка которой торчит во впускном тракте, на пути потока, который разрежением «высасывает» бензин из этого стакана. Количество топлива – регулируется величиной отверстия (жиклера) внутри этой «соломинки», а постоянный уровень в «стакане» (поддоне) поддерживается бензонасосом. Общий объем бензовоздушной смеси – регулируется поворотом воздушной заслонки – дросселя (педалью газа).

Карбюраторный двигатель для ВАЗ 2109 и 2108

Инжекторный

Объем поступающего воздуха и качество смеси в инжекторных ДВС регулируется отдельно: за воздух – так же отвечает дроссель, за топливо – «мозги» (ЭБУ), дающие форсунке команду на впрыск.

Соответственно размещению топливных форсунок, инжекторы делятся на три типа:

  • Центрального – выходящие соплом во впускной коллектор (устаревший).
  • Распределенного — индивидуальная форсунка на каждый впускной клапан.
  • Непосредственного — сопло форсунки выходит прямо в камеру сгорания.

В двух последних типах – предварительное одинаковое рабочее давление «форсункам» обеспечивает единая топливная рейка (она же – рампа).

Инжекторный двигатель Лада Гранта

Дизельный двигатель

Система подачи топлива в этих ДВС сходна с распределенным впрыском на инжекторах, только с поправкой на большую, по сравнению с бензиновыми движками, степень сжатия. Ее характеристики для бензинового, в среднем, составляют от 7 до 10 единиц, для дизеля – от 11 до 20 (26 у супертурбо) единиц. Давления порядка 40–50 бар — хватает на то, чтобы разогреть воздух в камере сгорания до 800–900 о С, поэтому впрыскиваемое в этот момент топливо сгорает, даже если оно недостаточно однородно распылено, из-за чего движки, работающие на солярке, по сравнению с другими, выдают процентов на 10–12 больший КПД, и демонстрируют до 40% экономии топлива. Естественно, для реализации таких характеристик нужен значительный запас прочности, поэтому детали ЦПГ и коленвала дизеля всегда будут массивнее, толще, тяжелее, чем у бензинового мотора внутреннего сгорания того же объема и конфигурации.

Дизельный двигатель Мерседес

Газодизельный

Это еще более экономичная (до 60% экономии топлива) версия типового мотора, потребляющего солярку. Правда не в качестве основного топлива, а в качестве инициирующей «запальной» порции, перед впрыском основной — сжиженного природного газа.

Конфигурацией агрегатов — не отличается от дизеля, применяется в тяжелой дорожной, или стационарной технике. Газодизели получаются из простого серийного мотора, путем установки специальной версии ГБО.

Гибридный двигатель: силовая установка автомобилей Hybrid Technology

За исключением редких концептов, вроде свободнопоршневых, это обычные бензиновые движки (дизельные – в этом плане практически не применяются), которые лишены привычной коробки передач и «крутят», в основном, электрогенератор, питающий емкую аккумуляторную батарею. Аккумулятор, в свою очередь, питает большой, тяговый электродвигатель, сообщающий крутящий момент на колеса. В зависимости от нагрузки и уровня заряда батареи, обычный мотор — отключается, либо подключается автоматикой к общей трансмиссии машины, через вариатор.

Гибридный двигатель BMW

Устройство двигателей внутреннего сгорания: какие бывают разновидности и конфигурации

В конструкции современных автомобилей обычно применяются силовые установки с числом цилиндров от двух и больше. При том же объеме, двухцилиндровый мотор выдаст больший крутящий момент, чем одноцилиндровый, а четырехцилиндровый – соответственно, больше, чем двух. Однако «умножать» их количество можно только до какого‐то разумного предела: при всей эффективности, нужно соблюсти компактность, обеспечить цилиндрам равно хорошую смазку, подачу горючего и охлаждение.

В погоне за идеалом, конструкторы «разродились» несколькими схемами взаимной компоновки цилиндропоршневой группы и кривошипно‐шатунного механизма. Самые распространенные виды — рядная и V‐образная схема.

Рядный тип – это когда шатуны нескольких цилиндров (2-3-4-5-6 шт.) смонтированы на одном продольном коленчатом валу, каждый на отдельной «шейке», цилиндры идут в едином блоке, параллельно друг другу. Наиболее популярны 4 и 6‐цилиндровые версии.

Рядный 4‐х цилиндровый двигатель в разрезе

У V-образных движков, цилиндры которых расположены в два ряда, под взаимным углом 60, 90, либо 45 (мотоциклетные) градусов — на одной коренной шейке могут монтироваться по два шатуна одновременно. Самые надежные и сбалансированные — версии V6 и V8.

V‐образный двигатель в разрезе

Оппозитный вариант компоновки бывает двух видов: сходный с V-образным, но с развалом цилиндров 180 градусов и стыковкой шатунов на единой шейке, с последовательным поочередным выходом в ВМТ. Либо – с индивидуальными «коленами» для каждого из них, находящихся в противофазе: одновременно выходящих на ВМТ.

Оппозитный двигатель в разрезе

U-образный тип компоновки подразумевает параллельное «сращивание» двух рядных моторов со взаимно независимыми кривошипными механизмами, вращающимися в противоположном направлении и рядами блоков. Преимущества – те же, что у «рядников», плюс компенсация инерционных вибраций.

U‐образный двигатель Бугатти

VR двигатель – очень старый (20 годов ХХ века) вариант V-образной компоновки с единым «коленом» и развалом цилиндров менее 20 градусов. Рядно‐смещенная схема позволяет сделать ДВС очень компактным при большой кубатуре.

VR двигатель в разрезе

W-двигатель – наиболее монструозный вариант с тремя, или четырьмя рядами цилиндров, взаимно «разваленных» под углом от 50 до 30 градусов, шатуны которых посажены на единый коленвал. Преимущественно 12‐цилиндровый, формой напоминающий одноименную букву, движок выдавал бешеный крутящий момент. Применялся в основном на спорткарах.

Читайте также:
Маркировка шин: расшифровка, обозначения, индекс, параметры, что они означают

W‐образный двигатель в разрезе

Нестандартные виды двигателей автомобилей и их отличия от привычных нам ДВС

Не укладывающиеся в привычные нам рамки автомобильных моторов, но, тем не менее, успешно реализованные в серийном или мелкосерийном производстве: роторно-поршневые (они же РПД, RCV, или Двигатель Ванкеля) имеют равное число серьезных недостатков и достоинств, перекрывающих их в глазах преданных фанатов.

Все японские автомобильные концерны имеют лицензию на производство РПД еще с 50-х годов прошлого века, но только одному удалось довести до «серии» этот прожорливый, перегревающийся, неремонтопригодный движок с крайне малым ресурсом (от 30 до 150 т. км пробега). Кроме Мазды, в 70–80 годы такой тип мотора применялся в отдельных моделях Ситроенов, Шевроле, Мерседесов, и даже некоторых ВАЗах (спецтранспорт для ГАИ и милиции).

Роторно‐поршневой двигатель Мазда

Принцип работы РПД похож на вращение якоря в обмотке электродвигателя, с той разницей, что большой треугольный эксцентрик его «ротора» внутри корпуса «статора» «толкает» не ток, а энергия теплового расширения сгорающей бензо‐масло‐воздушной смеси. Каждая плоскость ротора имеет углубление, служащее камерой сгорания, каждый торец — снабжен уплотнением, работающим как поршневое кольцо. Захватив порцию смеси, они последовательно продвигают ее по кругу, за один оборот проходя все 4 такта рабочего цикла.

Принцип настолько же прост, насколько эффективен: мощность, выдаваемая одним (нетурбированным!) блоком объемом 1.3 л достигала 230–250 л с. При необходимости, блоки можно набирать последовательно насаживая на единый вал, и получая соответствующий прирост мощности. Роторно-поршневой двигатель лишен вибраций, фантастически компактен, имеет высокий КПД, поэтому, несмотря на склонность к перегреву, сложность в изготовлении и малый ресурс, все еще совершенствуется. Японским конструкторам удалось подвести «токсичность» Rotary Engine к нормам Евро-4, а впереди – планы по переводу его на «чистое» топливо — водород.

Дизельные двигатели

Конструкционные особенности дизельных двигателей

Дизельный двигательный агрегат – одна из разновидностей поршневых силовых установок. По своему исполнению он почти ничем не отличается от бензинового двигателя внутреннего сгорания. Там имеются те же цилиндры, поршни, шатуны, коленвал и прочие элементы.

Действие «дизеля» основано на свойстве самовоспламенения дизтоплива, распыляемого в пространстве цилиндра. Клапаны в таком моторе значительно усилены — это необходимо было сделать для того, чтобы агрегат был устойчив к повышенным нагрузкам в течение длительного времени. Из-за этого вес и размеры «дизеля» больше, чем у аналогичной бензиновой установки.

Есть и существенное отличие между дизельными и бензиновыми механизмами. Оно заключается в том, как именно образуется топливовоздушная смесь, каков принцип ее воспламенения и горения. Первоначально в работающие цилиндры направляется обычный чистый воздушный поток. По мере сжатия воздуха он прогревается до температуры около 700 градусов, после чего форсунки впрыскивают горючее в камеру сгорания. Высокая температура способствует моментальному самовозгоранию топлива. Горение сопровождается быстрым нагнетанием высокого давления в цилиндре, поэтому дизельный агрегат издает характерный шум в процессе работы.

Запуск дизельного двигателя

Пуск «дизеля» в холодном состоянии осуществляется благодаря свечам накаливания. Это нагревательные электроэлементы, интегрированные в каждую из камер сгорания. При включении зажигания свечи накаливания нагреваются до сверхвысоких температур = около 800 градусов. При этом разогревается воздух в камерах сгорания. Весь процесс занимает несколько секунд, а о готовности дизеля к запуску водителя оповещает сигнальный индикатор в панели приборов.

Подача электричества на свечи накаливания снимается автоматически примерно через 20 секунд после запуска. Это необходимо для обеспечения устойчивой работы холодного двигателя.

Устройство топливной системы дизельного мотора

Одной из самых важных систем двигателя, работающего на дизельном топливе, считается система подачи горючего. Ее главная задача – подача дизтоплива в цилиндр в жестко ограниченном количестве и только в заданный момент.

Основные компоненты топливной системы:

  • топливный насос высокого давления (ТНВД);
  • форсунки подачи горючего;
  • фильтрующий элемент.

Основное назначение ТНВД — подача горючего на форсунки. Он работает по заданной программе в соответствии с тем режимом, в котором функционирует мотор, и действиями водителя. Фактически, современные топливные насосы являются высокотехнологичными механизмами, которые автоматически управляют работой дизельного мотора на основании управляющих воздействий водителя.

В тот момент, когда водитель выжимает газовую педаль, он не меняет количество подачи горючего, а вносит изменения в работу регуляторов в зависимости от силы нажатия на педаль. Именно регуляторы изменяют количество оборотов двигателя и, соответственно, скорость машины.

Как отмечают специалисты ГК Favorit Motors, на легковых авто, кроссоверах и внедорожниках чаще всего устанавливают ТНВД распределительной конструкции. Они имеют компактные размеры, равномерно подают топливо в цилиндры и качественно работают на высоких оборотах.

Форсунка получает топливо от насоса и регулирует его количество перед тем, как перенаправить горючее в камеру для сгорания. На дизельные агрегаты устанавливают форсунки с распределителем одного из двух видов: шрифтовым либо многодырчатым. Иглы распределителей изготавливаются из высокопрочных жаростойких материалов, поскольку они работают в условиях высоких температур.

Топливный фильтр — это простой и, одновременно, один из важнейших компонентов дизельного агрегата. Его рабочие параметры должны в точности соответствовать конкретному типу двигателя. Назначение фильтра — отделение конденсата (для этого предназначено нижнее сливное отверстие с пробкой) и устранение лишнего воздуха из системы (используется верхний насос подкачки). На некоторых моделях авто предусмотрена функция электрического подогрева топливного фильтра — это позволяет упростить запуск дизеля в зимний период.

Виды дизельных агрегатов

В современном автомобилестроении используются два типа дизельных силовых установок:

  • двигатели с прямым впрыском;
  • дизели с раздельной камерой сгорания.

У дизельных агрегатов с прямым впрыском камера сгорания интегрирована в поршень. Горючее впрыскивается в пространство над поршнем, после чего направляется в камеру. Прямой впрыск топлива обычно используется на низкооборотных силовых установках с большим рабочим объемом, где имеются сложности с процессом воспламенения.

Читайте также:
Что входит в трансмиссию автомобиля: из чего состоит, составляющие, элементы и структура

Более распространены сегодня дизельные моторы с раздельной камерой. Впрыск горючей смеси производится не в пространство над поршнем, а в дополнительную полость, которая имеется в головке цилиндра. Такой способ оптимизирует процесс самовоспламенения. К тому же такой тип дизеля работает с меньшим шумом даже на самых высоких оборотах. Именно такие двигатели сегодня устанавливают на легковых автомобилях, кроссоверах и внедорожниках.

В зависимости от конструктивных особенностей дизельный силовой агрегат работает в четырехтактном и двухтактном циклах.

Четырехтактный цикл подразумевает следующие этапы работы силового агрегата:

  • Первый такт – это поворот коленвала на 180 градусов. Благодаря его движению открывается впускающий клапан, в результате чего воздух подается в полость цилиндра. После этого клапан резко закрывается. Одновременно с этим при определенном положении открывается и выхлопной (выпускающий) клапан. Момент одновременного открытия клапанов называют перекрытием.
  • Второй такт — это сжатие воздуха поршнем.
  • Третий такт — начало хода. Коленвал поворачивается на 540 градусов, топливно-воздушная смесь воспламеняется и сгорает при соприкосновении с форсунками. Выделяющаяся при горении энергия поступает в поршень и заставляет его двигаться.
  • Четвертый такт соответствует повороту коленвала до 720 градусов. Поршень поднимается вверх и выбрасывает через выпускной клапан отработавшие продукты горения.

Двухтактный цикл обычно используется при запуске дизельного агрегата. Суть его заключается в том, что такты сжатия воздуха и начало рабочего процесса у него укорочены. При этом поршень выпускает отработавшие газы через специальные впускные окна во время своей работы, а не после того, как опустится вниз. После принятия исходного положения осуществляется продувка поршня, чтобы удалить остаточные явления от горения.

Преимущества и недостатки использования дизельных двигателей

Силовые агрегаты на дизельном топливе характеризуются высокой мощностью и коэффициентом полезного действия. Специалисты ГК Favorit Motors отмечают, что автомобили с дизельными агрегатами с каждым годом становятся все более востребованными в нашей стране.

Во-первых, благодаря особенностям процесса горения топлива и постоянному выхлопу отработавших газов, дизель не предъявляет строгих требований к качеству топлива. Это делает их и более экономичными и доступными в обслуживании. Кроме того, расход топлива у дизельного мотора меньше, чем у бензинового агрегата аналогичного объема.

Во-вторых, самовозгорание топливно-воздушной смеси производится равномерно в момент впрыска. Поэтому дизельные двигательные аппараты могут работать на пониженных оборотах и, несмотря на это, выдавать очень высокий крутящий момент. Такое свойство позволяет сделать транспортное средство с дизельным агрегатом намного легче в управлении, нежели авто с потреблением бензинового топлива.

В-третьих, в использованных газовых выхлопах дизельного мотора содержится гораздо меньше окиси углерода, что делает эксплуатацию таких авто экологичной.

Несмотря на свою надежность и высокий моторесурс, дизельные силовые агрегаты со временем выходят из строя. Самостоятельно проводить ремонтные работы мастера ГК Favorit Motors не рекомендуют, ведь современные «дизели» — это высокотехнологичные установки. И для их ремонта необходимы специальные знания и оборудование.

Специалисты автосервиса Favorit Motors – это квалифицированные мастера, которые прошли стажировку и обучение в учебных центрах заводов-производителей. Они обладают доступом ко всей технологической документации и имеют многолетний опыт ремонта дизельных агрегатов любых модификаций. В нашем техцентре имеется все необходимое оборудование и узкопрофильные инструменты для диагностики и ремонта дизельных моторов. Кроме того, услуги по восстановлению и ремонту «дизелей», оказываемые в ГК Favorit Motors, являются необременительными для кошельков москвичей.

Мастера автосервиса отмечают, что долговечность работы «дизеля» напрямую зависит от того, насколько своевременно и качественно проводится сервисное обслуживание. В техцентре Favorit Motors регламентное ТО выполняется в строгом соответствии с технологическими картами производителя и с использованием только высококачественных сертифицированных запчастей.

Дизель на современных автомобилях

В России большинство автолюбителей предпочитают двигатели внутреннего сгорания, работающего на бензине и не стремятся приобретать автомобили с дизелем. Даже в то время, когда цена дизтоплива была намного дешевле бензина А-92 дизельный двигатель имел широкое распространение только на коммерческих машинах с большой грузоподъемностью или пассажировместимостью. И действительно, было очень накладно эксплуатировать автомобиль «Урал» с V-образным бензиновым двигателем, потребляющим 100 литров на 100 километров. Его в шутку так и называли «100 на 100». Во времена СССР автомобили с бензиновым двигателем и очень хорошим аппетитом выпускались заводом им. Лихачева (ЗИЛ-130), Горьковским автомобильным заводом (ГАЗ-51, ГАЗ-66) и т.д. В настоящее время цена за литр дизтоплива стала выше А-92, но и в этом случае дизельный двигатель является экономичным, но все также не пользуется большим спросом у населения. А вот почему, мы и разберемся в этой статье.

Конструктивные особенности дизеля

Конструктивно основа дизеля не отличается от бензинового двигателя. Такой же блок цилиндров, поршневая группа, шатуны и головка блока с клапанами. Клапаны, в отличие от бензинового двигателя изготовлены из жаропрочной стали, более массивные, выдерживающие температурные и ударные нагрузки. Дизель по массе намного тяжелее и по габаритам больше бензинового двигателя. Разница в технологических принципах действия бензинового и дизельного двигателей вносит конструктивные различия в детали по массе, а также по габаритам. Принципиальные отличия, связанные моделью преобразования топлива и воздуха в топливовоздушную смесь с условиями воспламенения, характеризуют основу работы дизеля.

В отличие от бензинового двигателя, подача воздуха в цилиндры дизеля и дизельного топлива осуществляется раздельно:

  • воздух, поступивший в цилиндр, под воздействием давления поршня сжимается, нагреваясь до высоких температур (600 — 900 градусов);
  • в необходимый момент, по заданной программе или настройке топливного насоса высокого давления (ТНВД) из форсунки под давлением 180 атм происходит впрыск топлива, в результате которого смесь самовоспламеняется.
Читайте также:
Renault Scenic i рестайлинг: отличия от базовой модели

Главным в дизельном двигателе является смесеобразование в очень короткий промежуток времени.

Дизельные двигатели делятся на два класса по типу камеры сгорания:

  • раздельная (форкамерная);
  • неразделенная (непосредственный впрыск).

В настоящее время, большая часть легковых автомобилей оснащается дизелями с раздельной камерой сгорания. Использование раздельной камеры сгорания позволяет снизить скорость нарастания компрессии в цилиндрах, а это, в свою очередь, уменьшает шум и вибрацию двигателя. Раздельная камера сгорания представляет собой камеру, дополнительно оснащенную вихревой и являющейся промежуточным звеном между цилиндром и топливной системой. Благодаря работе вихревой камеры, в которой начинается воспламенение смеси и происходит снижение темпа нарастания компрессии.

а) вихревая камера фирмы Перкинс (разделенная камера сгорания);

б) дельтовидная, применяемая на двигателях Д-245 (неразделенная камера сгорания);

в) тороидальная, применяемая на двигателях КамАЗ (неразделенная камера сгорания);

1 – вставка вихревой камеры;

2 – головка блока цилиндров;

А – полость вихревой камеры;

Б – полость камеры в поршне.

Возможно, холодное отношение к дизелю потенциальных покупателей автомобилей связано с громким шумом его, напоминающего работу трактора, а также низкими скоростными показателями. Это было справедливо в то время, когда основу дизельных двигателей составляли ТНВД с плунжерными парами и впрыск осуществлялся непосредственно в камеру сгорания с применением механических узлов. Двигатели с непосредственным впрыском (нераздельной камерой сгорания) ещё существуют и наиболее часто встречаются на коммерческом дизельном транспорте. В нераздельной камере сгорания впрыск топлива происходит в надпоршневое пространство, а камера сгорания расположена в углублении поршня. Устаревшая технология непосредственного впрыска для двигателей с большим объемом в настоящее время актуальна, несмотря на применение двухступенчатой системы впрыска, управляемых электроникой ТНВД и форсунок, снижения шумов и получения стабильных высоких оборотов коленчатого вала.

На рисунке — неразделенная камера сгорания и свеча накаливания. В поршне предусмотрена канавка, в которой происходит горение смеси.

Особенности дизельного двигателя

Основными проблемами производителей автомобилей с дизельным двигателем являлись вопросы повышенного «тракторного» шума, запуска при холодном состоянии, эксплуатации в зимних условиях, ускорения динамики разгона.

Борьба с шумом и вибрацией в салоне автомобиля велась проклейкой салона специальными материалами, но эффект был незначительный. И только после внедрения технологии с раздельной камерой сгорания значительно удалось снизить шумы и вибрацию на легковых автомобилях. Кроме этого, после реализации электронной системы управления ТНВД и форсунок значительно снижен не только «тракторный шум», но и увеличен максимальный порог оборотов коленчатого вала, который достиг 4500 об/мин.

Увеличение оборотов до 4500 явилось большим прогрессом в развитии дизельных двигателей, но необходимо отметить, что он со своим индивидуальным характером. Двигатель специфичный и требует соблюдения правил эксплуатации и управления. Возникают такие случаи, когда владелец автомобиля, приобретая его в целях экономии топлива через некоторое время разочаровывается в его расходе. Изучая стиль его управления автомобилем, выясняется, что, придерживаясь советов водителей, ранее управляющих автомобилем с дизельным двигателем, режим работы двигателя владелец не соблюдает. Автомобиль современный и близок к управлению так же, как и с бензиновым двигателем, а, следовательно, средние обороты его необходимо поддерживать в пределах 3000-3500. Если ездить с разделенной камерой сгорания на оборотах, не превышающих 2000, то и расход топлива, и износ деталей гарантирован.

Низкооборотные и мощные двигатели с непосредственным впрыском топлива в цилиндры не допускают превышения оборотов выше 2000-2500, а также, оснащенные насос-форсунками механического типа.

Проблемы холодного запуска дизелей

Проблема холодного старта на дизеле существовала с момента их производства. Автомобиль, простоявший ночь на морозе запустить утром было сложно. Водители КамАЗов порой, рискуя пожароопасностью, бензиновой лампой (в народе называют «паяльная лампа») открытым высокотемпературным пламенем грели масло в картере и топливные отстойники. После запуска холодный еще двигатель начинал свою работу с повышенным шумом и огромными клубами черного выхлопа отработанных газов. Сложность запуска дизеля в холодное время объясняется с очень низким испарением солярки. Согласно существующим ГОСТам температура замерзания дизельного топлива, а следовательно изменения его вязкости, показателей испарения делится на два вида:
— летняя марка топлива, работающая в диапазоне температур от минус 10 до минус 5 градусов;
— зимняя, с увеличенным диапазоном от минус 35 до минус 25 градусов.

Своевременный переход на соответствующие марки солярки, в зависимости от климатических условий, обеспечивал надежный удачный запуск.

Большую роль в пуске холодного двигателя сыграла разработанный подогрев воздуха внутри цилиндров свечой накаливания. Это был революционный прогресс в решении проблемы, особенно в холодных областях России.

Принцип работы свечи накаливания очень простой. При включении зажигания на свечи поступает импульсное напряжение, о чем информирует загорающийся на щитке приборов индикатор работы свечей (желтая лампа с символом спирали). Свечи прогреваются и, соответственно начинают воздействовать на молекулы воздуха, ускоряя их движение в цилиндрах двигателя. Процесс прогрева происходит в течение 20-30 секунд, контрольная лампа на панели гаснет и это является сигналом, разрешающим запуск двигателя.

Кроме свечей накаливания, работающие на прогрев воздуха в цилиндрах дизеля, другой тип свечей также разработан в этих целях, но прогрев происходит во впускной системе. Тип таких свечей называется факельным.

Факельная свеча вворачивается в впускной коллектор и через специальный штуцер к ней подводится солярка. На выходе свечи укладывается сетка в несколько слоев (в зависимости от типа свечи), которая смачиваясь соляркой испаряет ее под воздействием электрического накаливания электродов. Пары солярки подхватываются набегающим потоком воздуха, засасывающего поршнями и происходит реакция воспламенения, образующего на свече факел открытого пламени, размером до 30 мм. Факел, созданный накалом свечи и поступающего из атмосферы воздуха, начинает мгновенно прогревать воздух, поступающий в цилиндры двигателя.

Читайте также:
Велокрепление на крышу: позаботьтесь о безопасной транспортировке байка

При включении зажигания на панели приборов загорается контрольная лампа накаливания свечи. Готовность свечи к поджигу факела сообщает та же контрольная лампа, сменив режим постоянного свечения на мигающий режим.

Сигнализирующая миганием контрольная лампа сообщает водителю о возможности произвести вращение коленчатого вала стартером. При включении стартера автоматически открывается клапан подачи дизельного топлива в свечу и факел разгорается, поднимая температуру воздуха, который в свою очередь распределяется по цилиндрам. После успешного запуска дизеля, факельная свеча продолжает работать, обеспечивая ровный холостой ход и прекращается при заданной температуре двигателя.

Возникают ситуации, когда двигатель не запускается в морозную погоду. Возможными причинами могут быть:

— сильно разряжена аккумуляторная батарея;

— неисправна свеча накаливания или факельная свеча;

— заправлен бак не соответствующим климатическим условиям дизельным топливом;

— подсос воздуха на топливной магистрали;

— подкачивающий топливный насос не обеспечивает необходимое давление;

— низкая компрессия в цилиндрах.

Типы дизелей

Ресурс дизелей в климатических условиях эксплуатации Российской федерации составляет от 300 до 600 тыс. км. Такой широкий диапазон пробега объясняется наличием на территории России северных областей, где зимы суровые и долгие, а также южных с часто зависающим веселым солнцем.

Для дизельного двигателя зимние условий эксплуатации наиболее тяжелые и регулярность, систематичность и качество технического обслуживания является залогом успешного его использования даже при температурах ниже сорока градусов (Якутия).

Современные дизели делятся на типы, которым присвоены аббревиатуры, указывающие их конструктивные особенности. И тип двигателя желательно подбирать, учитывая условия его эксплуатации.

Производители при производстве дизелей применяют самые совершенные и проверенные многочисленными испытаниями технологии, и в зависимости от характеристик распределили их системно по группам: HDI, CDI, SDI, TDI.

В группах, обозначенных HDI, CDI, SDI, TDI общие две буквы DI — Direct Injection, то есть прямой впрыск топлива в камеру сгорания по простой технологической схеме – дизельное топливо закачивается в форсунки под высоким давлением. Количество подаваемого топлива и давление подачи регулируются таким образом, что сначала в камеру сгорания поступает небольшая порция топлива, а потом количество топлива возрастает. Такая схема создает работу дизельного двигателя более мягкой и плавной, и что главное, менее шумной.

Концерн PSA Peugeot Citroen скромно, используя технологию Common Rail обозначил свой дизель под шильдиком на крышке багажника HDI. Всего три буквы латиницы открывают огромный диапазон свободного времени для водителя, у которого только от одного слова «обслуживание» начинается «аллергия». У двигателей интервал сервисного обслуживания составляет 30 тыс. км, а ремень газораспределительного механизма и ремень навесных агрегатов не требуют замены в течение всего срока эксплуатации автомобиля.

В дизеле системы HDI применяется технология высокого давления. Подача топлива в единственную рампу осуществляется под давлением 2000 Бар, а оптимизация состава смеси контролируется электронным блоком управления. Двигатели HDI оснащены системой Common Rail. Особенностью системы является использование аккумуляторного резервуара, содержащий общую рампу, линию подачи топлива и форсунок. Электронный блок управления по заложенной в постоянную память программы передает управляющие коммутационные сигналы к форсункам, впрыскивающие топливо в камеру сгорания.

Система позволяет повысить точность управления процессом смесеобразования и горения, а также увеличивать давление впрыска. Common Rail повышает надежность и эффективность работы дизеля, но с применением сложного оборудования возрастает и стоимость двигателя.

В дизеле CDI применяется система Common Rail (Common Rail Diesel Injection), которая предоставила возможность сократить потребление топлива двигателем на 10-15%, при этом мощность мотора возросла на 30-35%. Наиболее сложная система и требует больших финансовых затрат для проведения сервисного обслуживания, но необходимо отметить, что качество и точность применяемых деталей и узлов снижают уровень износа их, увеличивая межремонтный интервал.

SDI (Saugdieseldirekteinspritzung – немец.) – самый надежный дизель, простой по конструкции и высоким уровнем устойчивости, разработанный и произведенный Volkswagen Group. Безнаддувный дизельный двигатель с прямым впрыском, иначе говоря атмосферный двигатель. Стоимость дизеля SDI значительно меньше TDI из-за отсутствия узлов наддува. Экономичность использования SDI проявляется уже при ремонте в связи с отсутствием дорогостоящей турбины наддува. Дизель уступает по мощности и по динамическим характеристикам более дорогим и сложным, но превосходит все остальные системы по надежности в работе.

Двигатель TDI (Turbocharged Direct Injection) разработан немецкой компанией Volkswagen. Его главное отличие, кроме непосредственного впрыска, является наличие турбонагнетателя с изменяемой геометрией турбин. Двигатель гарантированно оптимизирует состав и наполнение цилиндров смесью, высокоэффективно поддерживает процесс горения топлива, экономичен и соответствует экологическим нормам безопасности. Турбонаддув координирует и регулирует энергию потока отработавших газов и тем самым обеспечивает необходимое давление воздуха в широком диапазоне частоты вращения двигателя.

Слабым звеном системы TDI является его турбина, средний ресурс которой рассчитан на 150 тыс. км.

Все технологии CDI, TDI, HDI, SDI построены на использовании системы Common Rail третьего поколения, и не сильно различаются в схеме работы дизеля. Шильдики CDI, TDI, HDI, SDI на крышках багажника и звукозащитной крышке двигателя всего лишь отличительный знак производителей. Лидера, производящего дизели выделить из существующих групп сложно для каждого отдельного случая эксплуатации автомобиля. Здесь работает только расчет эффективности работы двигателя и его приспособленность к условиям эксплуатации. Но с большой уверенностью можно рекомендовать современный дизель, с которым несомненно существует выигрыш в экономическом плане и эффективности его использования.

Двигатели внутреннего сгорания. Классификация, основные типовые конструкции

Двигатели внутреннего сгорания (ДВС) — наиболее распростра­ненный тип тепловых двигателей, в которых процессы получения тепловой энергии и преобразования ее в механическую работу про­странственно совмещены. Достигается это совмещение благодаря тому, что получение теплоты от сжигания топлива осуществляется в полостях с ограниченным объемом, в результате чего расширяю­щиеся продукты сгорания создают избыточное давление. Такое давление реализуется в виде механической работы, затрачиваемой на перемещение поршней, турбинных лопаток или вытекающей струи газа. В соответствии с типом элемента, перемещаемого дав­лением газа, различают поршневые, турбинные и реактивные дви­гатели.

Читайте также:
ТНВД дизельного двигателя: устройство, работа и схема топливного насоса высокого и низкого давления

Благодаря компактности, высокой экономичности и надежнос­ти поршневые ДВС получили наиболее широкое применение в раз­личных отраслях промышленности, строительства и пр. Класси­фикация поршневых ДВС показана на рис. 1.

Процесс преобразования тепловой энергии в механическую ра­боту поршневыми двигателями осуществляется циклически.

Рабочим циклом называют совокупность последовательно про­текающих в цилиндре двигателя термодинамических процессов, в результате совершения которых происходит однократное преобра­зование тепловой энергии, выделенной при сжигании порции топ­лива в цилиндре двигателя, в механическую работу по перемеще­нию поршня. Рабочий цикл состоит из следующих процессов: за­полнения цилиндра воздухом или приготовленной в карбюраторе горючей смесью, сжатия воздуха или горючей смеси, подачи и распыливания топлива в дизелях (смесеобразование), воспламенения, сгорания и тепловыделения, расширения продуктов сгорания и вы­пуска отработавших газов.

Рис. 1. Общая классификация двигателей внутреннего сгорания.

Поршень в цилиндре двигателя совершает возвратно-поступа­тельные движения между определенными (фиксированными) по­ложениями, которые называются соответственно внутренней и наружной мертвыми точками (ВМТ и НМТ). Перемещение поршня между мертвыми точками в одном направлении называют ходом поршня, а часть цикла, совершаемую при движении поршня между мертвыми точками, — тактом. Название такта дается по основному процессу, протекающему при ходе поршня. При перемещении поршня объем внутренней полости цилиндра меняется.

Характерными объемами при этом принимаются следующие:

– объем внутренней полости цилиндра при положении поршня в ВМТ, называемый объемом пространства сжатия и обозначаемый Vc;

– объем внутренней полости цилиндра при положении поршня в НМТ, называемый полным объемом цилиндра и обозначаемый Vt;

– объем, описываемый поршнем между мертвыми точками, кото­рый называется рабочими объемом цилиндра и обозначается Vs.

Отношение полного объема цилиндра к объему пространства сжатия называют степенью сжатия, ее обозначают е и находят по формуле

(1)

Степень сжатия показывает, во сколько раз уменьшается объем цилиндра над поршнем, т. е. сжимается заряд в цилиндре при перемещении поршня из НМТ в ВМТ.

Рабочий цикл в ДВС может совершаться за два или четыре хода поршня. В соответствии с этим двигатели называют двух­тактными и четырехтактными.

В зависимости от способа приготовления горючей смеси, полу­чаемой при смешивании топлива с воздухом, различают двигатели с внутренним смесеобразованием — дизельные и внешним — кар­бюраторные двигатели.

По способу воспламенения рабочей смеси, состоящей из топлива и воздуха, ДВС делят на основные группы: с принудительным воспламенением от постороннего источника (двигатели карбюра­торные и газовые); с воспламенением от сжатия (дизели).

Карбюраторные двигатели работают на легком жидком топли­ве (бензине), дизели — на тяжелом жидком топливе (дизельном топливе и других фракциях нефти).

В карбюраторных двигателях горючая смесь образуется вне ци­линдра. В цилиндры поступает готовая смесь (пары бензина с воз­духом), которая во время такта сжатия сжимается в 6-9 раз и затем поджигается электрической искрой.

Дизели работают по иному принципу, чем карбюраторный дви­гатель: в цилиндры поступает не горючая смесь, а чистый воздух, который сжимается в 12-20 раз. При таком сжатии давление в камере сжатия повышается, а сам воздух при этом нагревается. В сжатый и нагретый воздух через специальную форсунку впрыс­кивается дизельное топливо, которое распыляется на мельчайшие капельки и частично испаряется, образуя с воздухом горючую смесь. Эта смесь воспламеняется от нагретого при сжатии воздуха без какого-либо постороннего зажигания и сгорает.

Количественные соотношения топлива и воздуха (топливо и воздух образуют горючую смесь) определяются окислительно-вос­становительными реакциями, протекающими между химическими элементами топлива и кислородом воздуха. В большем количестве воздуха можно сжечь большее количество топлива и, следова­тельно, получить большее количество теплоты и механической ра­боты, поэтому в дизельных двигателях для повышения мощности при неизменных геометрических параметрах цилиндров может ис­пользоваться наддув, т. е. подача воздуха под давлением.

Поршневой ДВС состоит из группы неподвижных и подвижных узлов и ряда обслуживающих систем. Принципиальные схемы од­ноцилиндрового четырехтактного дизеля с наддувом и двухтактного дизеля показаны на рис. 2, 3 и 4.

К основным неподвижным узлам относятся фундаментная рама с подшипниками коленчатого вала, на которую устанавливаются станина и втулки цилиндров. Сверху цилиндры закрываются крыш­ками. Двигатели с помощью лап монтируются на подмоторной раме 13 (см. рис. 2, а). Втулки цилиндров устанавливаются, как правило, в едином блоке, называемом блоком цилиндров 5, и закрывается единой для всего ряда цилиндров крышкой, которую называют головкой блока цилиндров 11. К главным подвижным деталям ДВС относятся поршень 7, шатун 3 и коленчатый вал 2.

Рис. 2. Двигатель внутреннего сго­рания (дизель):

а — принципиальная схема двигате­ля:

1 – нижний картер (поддон); 2 – коленчатый вал; 3 – шатун; 4 – верхний картер; 5 – блок цилиндров; 6 – нагнетатель (наддувочный аг­регат); 7 – поршень; 8 – впускной клапан; 9 -форсунка; 10 – выпускной клапан; 11 -голов­ка блока цилиндров; 12 – топливный насос высокого давления; 13 – подмоторная рама;

б – индикаторная диаграмма Р — V; в – диаграмма фаз газораспределения:

φ — угол опережения открытия впускного кла­пана; φз — угол запаздывания закрытия впуск­ного клапана; φв — угол опережения открытия выпускного клапана; φк — угол запаздывания закрытия выпускного клапана; φт — угол опе­режения впрыска топлива; φк — угол пере­крытия клапанов;

Читайте также:
Топливные форсунки дизельные: устройство, давление, принцип работы, виды и типы

г — схема работы четырехтактного дизеля

Рис. 3. Схема работы двухтактного дизеля со встречно-движущимися поршнями и прямоточно-щелевой продувкой:

1,6 – верхний и нижний поршни; 2 – продувочные окна; 3 – форсунки; 4 – камера сгорания; 5 – выхлопные окна

Рис. 4. Двухтактный дизель с П-образной поперечной продув­кой: а – схема работы двухтактного дизеля; б – диаграмма фаз газораспределения; в – индикаторная диаграмма: zут – рас­ширение; тп – свободный выпуск; паа’ – продувка; а’а” – на­полнение; а”с – cжатие; czy – горение; х – начало впрыска топлива; у -окончание подачи топлива в камеру сгорания

Каждый ДВС имеет следующие системы:

– систему газообмена, управляющую органами наполнения цилиндров свежим зарядом воздуха и очистки его от отработавших газов;

– топливную систему, служащую для подачи и подготовки топлива к сгоранию в цилиндре;

Современные ДВС оснащаются также дополнительными системами и устройствами, которые улучшают мощностные и другие показатели. К ним относят системы наддува, предпускового подо­грева и автоматики, шумо- и виброгасящие устройства, гасители крутильных колебаний на коленчатом валу и т. п.

К основным параметрам дизелей относят номинальную мощ­ность, число цилиндров, тактность, диаметр цилиндра, ход поршня, степень сжатия, массогабаритные размеры и др.

Рассмотрим принцип работы четырехтактного ди­зеля с наддувом (см. рис. 2, г), у которого один рабочий цикл совершается за четыре хода (такта) поршня, соответствующих двум оборотам коленчатого вала.

Первый такт — такт впуска свежего воздуха — происходит при перемещении поршня от ВМТ к НМТ. Впускной клапан 8 открыт, а выпускной 10 — закрыт. С началом движения поршня от ВМТ к НМТ объем рабочего пространства цилиндра 5 увеличи­вается, а давление в нем уменьшается и становится меньше атмос­ферного в дизелях без наддува (нагнетатель 6 отсутствует).

При наличии наддува воздух поступает в цилиндр под давлением, со­здаваемым компрессором (наддувочным агрегатом). При отсут­ствии наддува свежий заряд воздуха поступает в цилиндр за счет разрежения. Для достижения максимального наполнения цилинд­ра впускной клапан открывается несколько раньше, в точке г с определенным углом опережения, равным 15-35° угла поворота коленчатого вала до ВМТ, и закрывается в точке а с некоторым углом запаздывания φз, равным 10-30° поворота вала после НМТ (см. рис. 2, в).

Второй такт — такт сжатия — начинается при обратном ходе поршня НМТ к ВМТ при закрытых клапанах. В цилиндре образуется замкнутое пространство, объем которого при движении к ВМТ уменьшается. За счет уменьшения объема происходит сжа­тие свежего заряда воздуха, в результате чего повышаются его давление до 3-4 МПа и температура — до 600-700 °С, которая становится достаточной для самовоспламенения впрыскиваемого топлива.

При подходе поршня к ВМТ в цилиндр впрыскивается мелко распыленное топливо с некоторым опережением φт, равным 10-30° угла поворота коленчатого вала до ВМТ, для образования однород­ной смеси и ее воспламенения вблизи ВМТ.

Третий такт — такт расширения, при котором топливо сгорает и происходит резкое повышение давления и температуры рабочего тела. Максимальное давление при сгорании топлива у малооборот­ных дизелей 5-7 МПа, у средне- и высокооборотных 6-12 МПа, у дизелей с наддувом 10-15 МПа. Температура газа в конце сго­рания топлива тем выше, чем больше давление, и колеблется в пределах 1600-2000 °С.

Высокое давление при расширении рабочего тела вызывает дви­жения поршня от ВМТ к НМТ, в результате чего совершается полезная работа.

Четвертый такт — такт выпуска, при котором в конце рабоче­го хода до прихода поршня в НМТ открывается выпускной кла­пан 10 и начинается процесс свободного выпуска газов из цилинд­ра в выпускной трубопровод. Свободный выпуск осуществляется за счет перепада давления в цилиндре и в выпускной системе. Температура отработавших газов при этом 350-500 °С и давле­ние 0,3-0,4 МПа.

Опережение открытия выпускного клапана 10 в точке 6 соот­ветствует φв = 20-50° угла поворота коленчатого вала до НМТ. Поршень, двигаясь вверх, выталкивает отработавшие газы из ци­линдра, освобождая цилиндр для новой порции свежего воздуха.

Закрывается выхлопной клапан в точке r при φк = 10-30° за ВМТ. Сумма двух углов φ + φк называется углом перекрытия клапанов. При дальнейшем движении поршня вниз начинается новый рабочий цикл, такты которого повторяются в перечислен­ной ранее последовательности.

Рассмотрим принцип работы двухтактного дизеля (см. рис. 3) со встречно-движущимися поршнями и прямоточно-щелевой продувкой.

В цилиндре дизеля имеется по два поршня, движущихся в про­тивоположных направлениях и образующих при этом в средней части цилиндровой гильзы (между днищами поршней) одну об­щую камеру сгорания. Подвод продувочного воздуха к цилиндрам и выпуск отработанных газов осуществляются через окна в ци­линдровых гильзах, которые открываются и закрываются поршня­ми. Верхние поршни управляют впуском воздуха через продувочные окна, а нижние — выпуском отработанных газов через выпуск­ные (выхлопные) окна.

Рабочий цикл в двухтактном дизеле совершается за два такта, т. е. за один оборот коленчатого вала, и осуществляется следую­щим образом.

Первый такт начинается при движении поршней навстречу друг другу (см. рис. 3) от их НМТ к ВМТ. Сначала нижний поршень перекрывает выпускные окна, а затем верхний поршень — продувочные окна. Указанная очередность закрытия окон объяс­няется тем, что нижний коленчатый вал по углу поворота опере­жает верхний на 12°. До закрытия выпускных окон воздух, посту­пающий под давлением, вытесняет отработавшие газы из цилинд­ра. Когда окна закрываются, воздух через открытые впускные окна продолжает поступать в цилиндр.

Более позднее закрытие впуск­ных окон по сравнению с выпускными способствует дозаправке цилиндра свежим воздухом до давления, почти равного давлению продувочного воздуха, т. е. происходит так называемый наддув. Это позволяет увеличивать весовой заряд воздуха в цилиндре, а, следовательно, сжечь большее количество топлива и получить большую мощность.

Читайте также:
Выхлопная система автомобиля: устройство, изготовление, система контроля, компоненты и резонаторы

Как только окна закрылись, начинается сжатие воздуха в ци­линдре. Когда поршни приблизятся к ВМТ, в камеру сгорания впрыскивается топливо, которое в среде нагретого при сжатии до высокой температуры воздуха воспламеняется.

В начале второго такта происходит сгорание топлива, что при­водит к повышению давления газов в цилиндре до 8-9 МПа. Под действием этого давления поршни расходятся от ВМТ, газы расши­ряются и их давление понижается. В конце такта расширения ниж­ний поршень открывает выпускные окна и начинается выхлоп от­работавших газов. Немного позднее, когда верхний поршень откро­ет впускные окна, начинается процесс продувки цилиндра свежим воздухом. Этот процесс продолжается до момента закрытия выпуск­ных окон в начале первого такта, а далее цикл повторяется.

Аналогично совершается рабочий цикл двухтактного дизеля с П-образной поперечной продувкой (см. рис. 4).

Классификация и назначение ДВС

Как известно, на сегодняшний день существует большое количество различных типов двигателей внутреннего сгорания. Указанные типы силовых агрегатов являются источником энергии для транспортных средств, механизмов и агрегатов, а также отличаются по производительности, конструкции, по назначению и т.д.

В наших предыдущих статьях мы уже рассматривали всевозможные виды двигателей, которые устанавливаются на автомобили. Далее мы намерены поговорить о том, какая существует классификация двигателей внутреннего сгорания.

Общая классификация двигателей

Начнем с того, что двигатели внутреннего сгорания классифицируют по ряду признаков и особенностей. Прежде всего, силовые установки отличаются по своему назначению. ДВС бывают:

  • стационарного типа;
  • двигатели на транспорте;

Также силовые установки отличаются по типу используемого топлива. Двигатели могут работать на:

  • жидком и легком топливе (бензин, дизтопливо, спирт);
  • жидком тяжелом топливе (мазут, соляровое масло, газойль)
  • газовом топливе;
  • использовать горючее комбинированного типа, когда в двигателе одновременно используется жидкое топливо и газ (например, газодизель);
  • применяется сразу несколько видов топлива для многотопливного ДВС (агрегат работает как на бензине, так и на керосине и т.д.);

Также двигатели внутреннего сгорания можно разделить по тому, как реализовано преобразование тепловой энергии в результате сжигания топлива в механическую полезную работу. Двигатели бывают:

  • поршневыми ДВС (сгорание и преобразование тепловой энергии в механическую работу происходит в цилиндре двигателя;
  • газотурбинные двигатели (в таких двигателях топливо сгорает в особой камере сгорания, после тепловая энергия преобразуется в механическую на лопатках турбинного колеса;
  • двигатели комбинированного типа, в которых топливо сгорает в цилиндрах поршневого двигателя, при этом такой двигатель является генератором газа. Это значит, что тепловая энергия только частично превращается в механическую в цилиндре, а также частично преобразование происходит на лопатках турбинного колеса (например, турбопоршневой двигатель).

Еще двигатели внутреннего сгорания отличаются по способу смесеобразования. Силовые агрегаты бывают:

  • моторы с внешним смесеобразованием (рабочая смесь образуется не в цилиндре). Если просто, это карбюраторные бензиновые и газовые двигатели, а также инжекторные двигатели с впрыском топлива во впускной коллектор.
  • установки с внутренним смесеобразованием (на такте впуска в цилиндр отдельно подается воздух, затем прямо в камеру сгорания впрыскивается топливо, а рабочая смесь образуется уже в самом цилиндре). Такое смесеобразование происходит в дизельных двигателях, в бензиновых установках с искровой системой зажигания и газовых двигателях, где реализована подача горючего в цилиндр перед началом сжатия.

Также двигатели классифицируют и по способу воспламенения рабочей топливно-воздушной смеси. Смесь может воспламеняться:

  • от внешнего источника, которым выступает электрическая искра на свече зажигания;
  • от сжатия, где смесь воспламеняется от высоких температур во время сильного сжатия воздуха и топлива в цилиндре (например, дизельный ДВС);
  • агрегаты с форкамерно-факельным зажиганием. В таких форкамерных моторах имеется две камеры сгорания. В первой (малой) камере смесь воспламеняется от искры, затем дальнейшее воспламенение основного заряда в основной (большой) камере происходит благодаря распространению фронта пламени из малой камеры.
  • двигатели, которые работают по принципу первичной подачи небольшого количества жидкого топлива (самовоспламеняется от сжатия), в результате чего удается поджечь и основной заряд, который состоит из газового топлива (газодизельный двигатель).

Что касается наддува, двигатели бывают компрессорными и турбированными, а также могут сразу иметь оба решения. Моторы с турбокомпрессором получают газовую турбину, которая работает благодаря воздействию отработавших газов.

Агрегаты с механическим компрессором конструктивно оснащены устройством, которое приводится в действие от двигателя, забирая у него часть энергии. Комбинированный тип предполагает, что двигатель одновременно имеет и турбокомпрессор, и механический нагнетатель.

Еще следует упомянуть различия по способу регулирования подачи топлива в цилиндры при изменении нагрузки. Существуют двигатели с регулированием смеси по:

  • качеству;
  • количеству;
  • смешанного типа;

В первом случае речь идет об изменении состава смеси с учетом нагрузок и режимов работы ДВС. Во втором случае состав не меняется, при этом подается только большее или меньшее количество. В двигателях со смешанным регулированием меняется как состав смеси, так и количество, что зависит от нагрузок на агрегат.

Напоследок отметим, что классификация автомобильных двигателей затрагивает поршневые ДВС (бензиновые, дизельные и газовые), карбюраторные и инжекторные, с внешним смесеобразованием или прямым впрыском топлива, с воспламенением от искры или с воспламенением от сжатия.

Также на некоторых авто можно встретить газотурбинные, форкамерные или роторно-поршневые двигатели, однако сегодня такие агрегаты нельзя назвать массовыми применительно к автоиндустрии.

Основные конструктивные отличия ДВС

Если говорить о главных отличиях в конструкции поршневых двигателей, различные силовые агрегаты делятся на рядные горизонтальные и вертикальны по расположению цилиндров. Также двигатели бывают V-образными, оппозитными и т.д.

Читайте также:
Что входит в трансмиссию автомобиля: из чего состоит, составляющие, элементы и структура

Еще агрегаты бывают однопоршневыми двигателями, когда в одном цилиндре имеется один поршень и рабочая полость. При этом также встречаются ДВС, в которых поршни движутся противоположно в одном цилиндре, а рабочая полость находится между двумя поршнями. Также бывают моторы двойного действия, в которых по обеим сторонам от поршня имеются рабочие полости.

При этом существуют варианты роторного двигателя, где поршень-ротор не движется, а планетарное движение совершает корпус ДВС. Еще одной разновидностью можно считать агрегаты, в которых движется как корпус, так и сам ротор.

Что в итоге

Итак, выше были рассмотрены назначение и классификация двигателей внутреннего сгорания. При этом данная информация наглядно демонстрирует широчайшую сферу применения поршневых ДВС.

С учетом тех или иных особенностей конкретного типа ДВС такие агрегаты используются как на транспортных средствах, так и в качестве генераторов, устройств привода всевозможных агрегатов и механизмов.

Разновидности ДВС и принцип действия теплового двигателя. Рабочий цикл и такты, преимущества и недостатки. Основные и альтернативные виды топлива.

Виды двигателей внутреннего сгорания, отличия различных типов ДВС. Особенности компоновки, объем двигателя, мощность, крутящий момент и другие параметры.

Список самых надежных бензиновых и дизельных моторов: 4-х цилиндровые силовые агрегаты, рядные 6-ти цилиндровые ДВС и V-образные силовые установки. Рейтинг.

Устройство и схема работы инжектора. Плюсы и минусы инжектора по сравнению с карбюратором. Часты неисправности инжекторных систем питания. Полезные советы.

Какие существуют самые маленькие двигатели внутреннего сгорания. Для чего используются миниатюрные ДВС. Самый маленький дизель в мире: особенности.

Особенности и отличия оппозитного двигателя от других поршневых ДВС. Преимущества оппозитного мотора, минусы данной конструкции, нюансы обслуживания.

Коленчатый вал от А до Я

Здравствуйте уважаемые читатели моего блога!
Данная статья показалась мне интересной в плане общего развития.

• Коленчатый вал – один из наиболее ответственных и дорогостоящих конструктивных элементов двигателя внутреннего сгорания. Он преобразует возвратно-поступательное движение поршней в крутящий момент. Коленчатый вал воспринимает периодические переменные нагрузки от сил давления газов, а также сил инерции движущихся и вращающихся масс.

• Коленчатый вал двигателя, как правило, цельный конструктивный элемент, поэтому правильно его называть деталью. Вал изготавливается из стали с помощью ковки или чугуна путем литья. На дизельных и турбированных двигателях устанавливаются более прочные стальные коленчатые валы.

— Схема коленчатого вала:

1 носок коленчатого вала;
2 посадочное место звездочки (шестерни) привода распределительного вала;
3 отверстие подвода масла к 4 коренной шейке;
5 противовес;
6 щека;
7 шатунные шейки;
8 фланец маховика;
9 отверстие подвода масла к шатунной шейке;
10 противовесы;
11 коренные шейки;
коренная шейка упорного подшипника.

• Конструктивно коленчатый вал объединяет несколько коренных и шатунных шеек, соединенных между собой щеками. Коренных шеек, как правило, на одну больше, а вал с такой компоновкой называется полноопорным. Коренные шейки имеют больший диаметр, чем шатунные шейки. Продолжением щеки в противоположном от шатунной шейки направлении является противовес. Противовесы уравновешивают вес шатунов и поршней, тем самым обеспечивают плавную работу двигателя.

• Шатунная шейка, расположенная между двумя щеками, называется коленом. Колена располагаются в зависимости от числа, расположения и порядка работы цилиндров, тактности двигателя. Положение колен должно обеспечивать уравновешенность двигателя, равномерность воспламенения, минимальные крутильные колебания и изгибающие моменты.

• Шатунная шейка служит опорной поверхностью для конкретного шатуна. Коленчатый вал V-образного двигателя выполняется с удлинёнными шатунными шейками, на которых базируется два шатуна левого и правого рядов цилиндров. На некоторых валах V-образных двигателей спаренные шатунные шейки сдвинуты относительно друг друга на угол 18°, что обеспечивает равномерность воспламенения (технология носит название Split-pin).

• Наиболее нагруженным в конструкции коленчатого вала является место перехода от шейки (коренной, шатунной) к щеке. Для снижения концентрации напряжений переход от шейки к щеке выполняется с радиусом закругления (галтелью). Галтели в совокупности увеличивают длину коленчатого вала, для уменьшения длины их выполняют с углублением в щеку или шейку.

• Вращение коленчатого вала в опорах, а шатунов в шатунных шейках обеспечивается подшипниками скольжения. В качестве подшипников применяются разъемные тонкостенные вкладыши, которые изготавливаются из стальной ленты с нанесенным антифрикционным слоем. Проворачиванию вкладышей вокруг шейки препятствует выступ, которым они фиксируются в опоре. Для предотвращения осевых перемещений коленчатого вала используется упорный подшипник скольжения, который устанавливается на средней или крайней коренной шейке.

— Схема системы смазки:

1 масляный поддон
2 датчик уровня и температуры масла
3 масляный насос
4 редукционный клапан
5 масляный радиатор
6 масляный фильтр
7 перепускной клапан
8 обратный клапан
9 датчик давления масла
10 коленчатый вал
11 форсунки
12 распределительный вал выпускных клапанов
13 распределительный вал впускных клапанов
14 вакуумный насос
15 турбонагнетатель
16 стекание масла
17 сетчатый фильтр
18 дроссель.

• Коренные и шатунные шейки включены в систему смазки двигателя. Они смазываются под давлением. К каждой опоре коренной шейки обеспечивается индивидуальный подвод масла от общей магистрали. Далее масло по каналам в щеках подается к шатунным шейкам.

• Отбор мощности с коленчатого вала производится с заднего конца (хвостовика), к которому крепится маховик. На переднем конце (носке) коленчатого вала располагаются посадочные места, на которых крепятся шестерня (звездочка) привода распределительного вала, шкив привода вспомогательных агрегатов, а также в ряде конструкций – гаситель крутильных колебаний. По конструкции это два диска и соединяющий их упругий материал (резина, силиконовая жидкость, пружина), который поглощает вибрации вала за счет внутреннего трения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: