Схема преобразователя питания DC/DC 12-5В

Универсальный автомобильный преобразователь (конвертер) “DC/DC”.

Это простой, универсальный DC/DC – преобразователь (преобразователь одного напряжения постоянного тока в другое). Его входное напряжение может быть от 9 и до 18 В, с выходным напряжением 5-28 вольт, которое может при необходимости быть изменено в пределах примерно от 3 до 50В. Выходное напряжение данного преобразователя может быть как меньше входного, так и больше.
Отдаваемая в нагрузку мощность может доходить до 100 Вт. Средний ток нагрузки преобразователя составляет 2,5-3 ампера (зависит от выходного напряжения, и при выходном напряжении, например 5 вольт – ток нагрузки может быть и 8 ампер и более).
Этот преобразователь подходит для различных целей, таких как – запитывание ноутбуков, усилителей, портативных телевизоров и другой бытовой техники от бортовой сети автомобиля 12V, так-же зарядка мобильных телефонов, устройств USB, 24В техника и др.
Преобразователь устойчив к перегрузкам и коротким замыканиям на выходе, так как входная и выходная цепь – гальванически не связаны между собой, и например выход из строя силового транзистора, не приведёт к выходу из строя подключенной нагрузки, и всего лишь на выходе пропадёт напряжение (ну и перегорит защитный предохранитель).

highslide.js

Рисунок 1.
Схема преобразователя.

Преобразователь построен на микросхеме UC3843. В отличии от обычных схем подобных преобразователей, здесь в качестве энерго-вырабатывающего элемента применён не дроссель, а трансформатор, с соотношением витков 1:1, в связи с чем его вход и выход, гальванически развязаны между собой.
Рабочая частота преобразователя составляет около 90-95 kHz.
Рабочее напряжение конденсаторов С8 и С9 выбирать, в зависимости от выходного напряжения.
Величина резистора R9, определяет порог ограничения преобразователя по току. Чем меньше его величина, тем больше ток ограничения.
Вместо подстроечного резистора R3, можно поставить переменный, и им регулировать выходное напряжение, или поставить ряд постоянных резисторов с фиксированными значениями выходного напряжения, и выбирать их переключателем.
Для расширения диапазона выходных напряжений, необходимо пересчитать делитель напряжения R2, R3, R4, таким образом, чтобы напряжение на выводе 2 микросхемы, составляло 2,5 вольта при необходимом выходном напряжении.

Рисунок 2.
Трансформатор.

Сердечник трансформатора использован от компьютерных блоков питания АТ, АТХ, на котором намотан ДГС (дроссель групповой стабилизации). Сердечник окраски жёлто-белый, можно использовать любые подходящие сердечники. Хорошо подходят и сердечники от подобных БП и сине-зелёной окраски.
Обмотки трансформатора намотаны в два провода и содержат 2х24 витка, проводом, диаметром 1,0 мм. Начала обмоток на схеме обозначены точками.

В качестве выходных силовых транзисторов желательно использовать те, у которых малое сопротивление открытого канала. В частности SUP75N06-07L, SUP75N03-08, SMP60N03-10L, IRL1004, IRL3705N. И выбирать их ещё нужно с максимальным рабочим напряжением, в зависимости от максимального выходного напряжения. Максимальное рабочее напряжение транзистора не должно быть меньше 1,25 от выходного напряжения.
В качестве диода VD1, можно применить спаренный диод Шоттки, с обратным напряжением не менее 40В и максимальным током не менее 15А, так же желательно в корпусе ТО-220. Например SLB1640, или STPS1545 и т.д.

Схема была собрана и протестирована на макетной плате. В качестве силового транзистора был использован полевой транзистор 09N03LA, выдранный из “дохлой материнки”. В качестве диода – спаренный диод Шоттки SBL2045CT.

highslide.js

Рисунок 3.
Тест 15V-4A.

Тестирование инвертора при входном напряжении 12 вольт и выходном напряжении 15 вольт. Ток нагрузки инвертора составляет 4 ампера. Мощность нагрузки составляет 60 ватт.

highslide.js

Рисунок 4.
Тест 5V-8A.

Тестирование инвертора при входном напряжении 12 вольт, выходное напряжение 5V и ток нагрузки 8A. Мощность нагрузки составляет 40 ватт. Силовой транзистор применённый в схеме = 09N03LA (SMD из материнки), D1 = SBL2045CT (от комповых БП), R9 = 0R068 (0,068 Ом), C8 = 2 х 4700 10V.

Читайте также:
Регулируемый стабилизатор напряжения для зарядного устройства

Печатная плата, разработанная для этого устройства, размером 100х38 мм, с учётом установки транзистора и диода на радиатор. Печатка в формате Sprint-Layout 6.0, прилагается в прикреплении.

Ниже на фотографиях вариант сборки данной схемы с применением SMD-компонентов. Печатка разведена для SMD-компонентов, размером 1206.

Рисунок 5.
Вариант сборки преобразователя.

Если нет необходимости регулировать выходное напряжение на выходе данного преобразователя, то тогда переменный резистор R3 можно исключить, и подобрать резистор R2 так, чтобы выходное напряжение преобразователя соответствовало необходимому.

Схема преобразователя питания DC/DC 12-5В

Сразу после первого вояжа на машине с семьёй на море возникла идея сделать в автомобиле стационарную разводу розеток под USB для зарядки мобильных устройств. Кстати сейчас новые автомобили стали уже комплектовать с инверторами на 220В и соответственно розетками на 5В.

Я таких машин ещё не встречал.
Да, в продаже если и есть адаптеры на для мобильных ПК то они предназначены для зарядки одного, максимум двух устройств при условии, что второе устройство не такое уж мощное. У меня в машине и так постоянно подключены 3 адаптера, но спрятаны они под колодкой предохранителей.

А пассажиры пользуются адаптером, который втыкается в разъём в пепельнице, что мне не очень удобно, так как его постоянно задеваю при переключении передач. После дня пути обычно у пассажиров разрежаются все устройства и начинается возня с зарядками мобильников. Приходится даже свой навигатор отключать, чтобы зарядить чьё-нибудь устройство.

Можно было сделать, как делают многие, покупают колодку на несколько адаптеров и сопли проводов тянутся по всему салону. И так требуется устройство выдающие положенные 5 вольт и мощностью 10 А. Много? Прикинем: 4 телефона, потребляют около 1 А каждый, планшет порядка 2 А, навигатор больше 0,5 А видеорегистратор тоже 0,5 А и радар-детектор около 0,5 А. И того 7, 5 А.

В процессе было собрано 3 преобразователя, но не один не мог выдерживать и 3 А продолжительное время. Один так вообще загорелся.

Нормально заработала только эта схема.

Снимок4212

Схема преобразователя DC/DC на MC34063

разводим плату для преобразователя

Снимок4213

Да, моя плата далека от идеала, умение разводить плату сравнимо с талантом. Полевик с диодом расположил так, чтобы можно было прицепить практически любой радиатор, сделав плату чуть длиннее, а крепёж уже по месту. Специально подгонять плату под корпус не стал в виду отсутствия такового. Все детали нашлись в первом раскуроченном блоке питания компьютера.

Для изготовления устройства понадобилось:

1. Конденсатор керамический С1 470 пФ (1шт)
2. Конденсатор электролитический С3,С5,С6 1000 мкФ, 16В (3шт)
3. Конденсатор электролитический С2 100 мкФ, 16В (1шт)
4. Конденсатор электролитический С4 470 мкФ, 25В лучше 50В(1шт)
5. Индуктивности DR1, DR2 типа гантелька (2шт)
6. Трансформатор импульсный DR3 кольцевой (1шт)
7. Индуктивность типа пенёк DR4 (1шт)
8. Винтовой клемник J1 (1шт)
9. Резистор R1 1,2 кОм (1шт)
10. Резистор R2 3,6 кОм (1шт)
11. Резистор R3 5,6 кОм (1шт)
12. Резистор R4 2,2 кОм (1шт)
13. Резистор R5 2,2 кОм или 1 кОм на 1ват (1шт)
14. Микроконтроллер U1 MC34063
15. Диод VD1, VD3 FR155 (2шт)
16. Диод VD2 SBL25L25CT (1шт)
17. Транзистор биполярный VT1 2SC1846 (1шт)
18. Полевой транзистор IRL3302 (1шт)
19. Панелька DIP8 (1шт)
20. Корпус по произвольным размерам

Основные компоненты: это сама микросхема U1, импульсный трансформатор DR3, мощный N канальный полевик VT2(может быть любым используемый в цепях питания) и диодная сборка VD2. Трансформатор VD3 изготовил из такого же трансформатора с того самого БП. Кольцо из пресспермалоя, желтого цвета. 27мм. Первичную обмотку набил проводом 2мм 22 витка, вторичную обмотку намотал проводом тоньше, 0,55 мм 44 витка.

Читайте также:
Зарядное устройство для аккумуляторов SMF 12В, 7.2 Ah

Индуктивности DR1 DR2 типа гантелька взял как есть из БП. Индуктивность типа пенёк DR4 тоже самое. Транзистор и диод разместил на радиаторе от того же БП.

Всё собрал на печатной плате собственной разработки. В ходе лабораторных испытаний пришлось внести изменения в предложенную автором схему. Дело в том что сам автор указывает на то что резистор R5 греется, даже замена на более мощный резистор проблему не решает. В течении часа резистор этот у меня почернел и обуглился.

Решил попробовать увеличить сопротивление до 2,2кОм и всё греться он перестал. Транзистор VT1, перестраховался, заменил на более мощный. Трансформатор DR3 тоже сначала не много грелся, перемотал, добавил количество витков в первичную и во вторичную обмотки, стало 30 и 60.

Не знаю, что там с фронтами открытия полевого транзистора но схема работает нормально, при нагрузке в 2А устройство остаётся холодным. Радиаторы на транзистор и диод можно большие не ставить. Поставил на выходе +5В ферритовое кольцо, для уменьшения помех.

Вот мой первый, рабочий, испытательный прототип.

Снимок4214

Испытание на сопротивление 1Ом сопротивление быстро нагрелось сила тока на фото.

Снимок4215

И последние, кипятильник на 5В в работе. Смотрите силу тока на фото. Да вот тут уже начали греться транзистор с диодом.

Снимок4216

Испытывал свой преобразователь на 5 А работал почти весь день так немного тёплый. Потом нашёл старый блок питания от монитора которого уже нет. Плату пустил в разбор, в корпус уместил свою схему. Транзистор и диод расположил на кулере от старого ноутбука. В противоположной стороне коробки просверлил ряд отверстий. Очень даже получилось ничего. Воздух будет прокачиваться через всю схему.

Снимок74

Готовое устройство на установку в автомобиль.

Снимок75

Розетки двойные под USB планирую врезать в одну в переднюю панель вместо кнопки-зглушки и вторую к задним пассажирам в подлокотник передних сидений. Также думаю одинарную розетку в панель передней левой стойки и подвести питание к видеорегистратору который находится у зеркала. По данной схеме можно собрать вообще универсальный блок питания, то есть добавить каскад преобразования из 12В в 19В для питания ноутбука, что планирую в будущем.

DC — DC преобразователь напряжения с 12 на 5 вольт. Схема и описание

В настоящее время, импульсные преобразователи используются практически везде и очень часто заменяют классические линейные стабилизаторы, на которых, как правило, при больших токах происходят значительные потери в виде тепла.

Приведенная здесь схема является простым импульсным понижающим преобразователем (Step-Down) с 12В до 5В. Схема построена на основе популярной и недорогой микросхеме MC34063.

Устройство предназначено для работы с автомобильной бортовой сетью 12В и может использоваться для зарядки/питания GPS навигаторов или мобильных телефонов, оснащенных разъемом USB.

В режиме ожидания схема полностью отключается от источника питания, а во время нормальной работы отключается сразу же после отключения нагрузки. Запуск преобразователя осуществляется путем кратковременного нажатия на кнопку и если к выходу не была ранее подключена нагрузка, например телефон, то преобразователь автоматически выключится.

dc-dc-preobrazovatel-napryazheniya-s-12-na-5-volt-sxema-i-opisanie-min

Описание работы преобразователя напряжения с 12 на 5 вольт

Как уже было сказано ранее, схема построена на микросхеме MC34063, которая представляет собой контроллер, содержащий основные компоненты, необходимые для изготовления DC-DC преобразователей.

Читайте также:
ЗУ для телефона от прикуривателя на MC34063

MC34063 содержит температурную компенсацию, источник опорного напряжения, компаратор и генератор с регулируемым заполнением. Кроме того, данная микросхема содержит схему ограничения тока и внутренний ключ, который может работать с токами до 1,5 А.

Для изготовления преобразователя требуется ОУ, дроссель, диод и несколько резисторов и конденсаторов. На рисунке ниже представлена полная принципиальная схема преобразователя.

Сердцем устройства является уже упомянутый ранее чип DD2 (MC34063), а так же дроссель L1 и диод Шоттки VD1. Диод выполняет очень важную роль — благодаря ему происходит закрытие контура для протекания тока от дросселя L1, возникающего после отключения внутреннего выходного ключа MC34063.

Конденсатор C3 определяет частоту работы внутреннего генератора DD2 и при емкости в 470pf частота будет составлять около 50 кГц. Резистор R5 отвечает за ограничение тока преобразователя и через него протекает весь импульсный ток, поступающий далее на дроссель L1. Ограничение тока установлено на уровне около 1,1 А.

Конденсатор C1 фильтрует напряжение питания. Выходной фильтр представляет собой конденсатор C4, а стабилитрон VD3 мощностью 1,3 Вт защищает схему от возможного кратковременного повышения напряжения.

Очень важным элементом является резистивный делитель напряжения R3, R7, так как он отвечает за величину выходного напряжения. Их соотношение подобрано таким образом, что при выходном напряжении 5В на входе 5 компаратора микросхемы DD2 было напряжение 1,25В.

Большим преимуществом данной схемы является возможность автоматического выключения питания после отключения нагрузки. За эту функцию отвечает транзистор VT1 и резисторы R1,R2. В выключенном состоянии резистор R1 обеспечивает правильную отсечку транзистора VT1. Запуск системы осуществляется через кратковременное нажатие кнопки SW1.

Преобразователь запускается, а транзистор VT2 далее поддерживает низкий уровень на базе VT1. Резистор R2 ограничивает ток базы транзистора VТ1.

Для контроля тока, потребляемого нагрузкой, используется операционный усилитель DD1 (LM358). Он работает в качестве неинвертирующего усилителя с коэффициентом усиления равным 1000. Коэффициент усиления определяется номиналами резисторов R8 и R9.

Конденсатор C2 фильтрует напряжение питания усилителя. Для управления транзистором VT2 используется делитель напряжения на резисторах R4 и R6, с коэффициентом деления 2.

Незначительное падение напряжения на измерительном резисторе (шунте) R11 порядка 5-6мВ приведет к открытию транзистора VT2 и поддержанию работы преобразователя. Таким образом, для поддержания работы преобразователя достаточно чтобы ток потребления был порядка 25-30мА. Светодиод VD2 выполняет роль индикатора питания, а его ток ограничен резистором R10.

Скачать рисунок печатной платы (80,4 KiB, скачано: 1 995)

Мощный преобразователь питания DC/DC 12-5В на MC34063

Сразу после первого вояжа на машине с семьёй на море возникла идея сделать в автомобиле стационарную разводу розеток под USB для зарядки мобильных устройств. Кстати сейчас новые автомобили стали уже комплектовать с инверторами на 220В и соответственно розетками на 5В. Я таких машин ещё не встречал.
Да, в продаже если и есть адаптеры на для мобильных ПК то они предназначены для зарядки одного, максимум двух устройств при условии, что второе устройство не такое уж мощное. У меня в машине и так постоянно подключены 3 адаптера, но спрятаны они под колодкой предохранителей. А пассажиры пользуются адаптером, который втыкается в разъём в пепельнице, что мне не очень удобно, так как его постоянно задеваю при переключении передач. После дня пути обычно у пассажиров разрежаются все устройства и начинается возня с зарядками мобильников. Приходится даже свой навигатор отключать, чтобы зарядить чьё нибудь устройство. Можно было сделать, как делают многие, покупают колодку на несколько адаптеров и сопли проводов тянутся по всему салону. И так требуется устройство выдающие положенные 5 вольт и мощностью 10А. Много? Прикинем: 4 телефона, потребляют около 1А каждый, планшет порядка 2А, навигатор больше 0,5А видеорегистратор тоже 0,5А и радар-детектор около 0,5А. И того 7, 5 А. В процессе было собранно 3 преобразователя, но не один не мог выдерживать и 3А продолжительное время. Один так вообще загорелся.

Читайте также:
Защищаем схему ЗУ от переполюсовки

Нормально заработала только эта схема, взятая с сайта РадиоКот www.radiokot.ru/circuit/power/converter/11/ автор которой Поляников Игорь (OldPol).
Так же на этой странице подробное описание процесса изготовления DC/DC преобразователя. Я не стал слепо копировать, перечертил схему устройства в DipTrace и сам развёл плату.

Схема преобразователя DC/DC на MC34063

Да, моя плата далека от идеала, умение разводить плату сравнимо с талантом. Полевик с диодом расположил так, чтобы можно было прицепить практически любой радиатор, сделав плату чуть длиннее, а крепёж уже по месту. Специально подгонять плату под корпус не стал в виду отсутствия такового. Нет принципиальной важности, использовать именно те детали, что использовал Игорь. У меня почти всё нашлось в первом раскуроченном блоке питания от компьютера. Не поспешил бы я выбросить сам корпус от БП можно было схему уместить в нём.

Для изготовления устройства понадобилось:
1. Конденсатор керамический С1 470 пФ (1шт)
2. Конденсатор электролитический С3, С5, С6 1000 мкФ, 16В (3шт)
3. Конденсатор электролитический С2 100 мкФ, 16В (1шт)
4. Конденсатор электролитический С4 470 мкФ, 25В лучше 50В(1шт)
5. Индуктивности DR1, DR2 типа гантелька (2шт)
6. Трансформатор импульсный DR3 кольцевой (1шт)
7. Индуктивность типа пенёк DR4 (1шт)
8. Винтовой клемник J1 (1шт)
9. Резистор R1 1,2 кОм (1шт)
10. Резистор R2 3,6 кОм (1шт)
11. Резистор R3 5,6 кОм (1шт)
12. Резистор R4 2,2 кОм (1шт)
13. Резистор R5 2,2 кОм или 1 кОм на 1ват (1шт)
14. Микроконтроллер U1 MC34063
15. Диод VD1, VD3 FR155 (2шт)
16. Диод VD2 SBL25L25CT (1шт)
17. Транзистор биполярный VT1 2SC1846 (1шт)
18. Полевой транзистор IRL3302 (1шт)
19. Панелька DIP8 (1шт)
20. Корпус по произвольным размерам

Основные компоненты: это сама микросхема U1, импульсный трансформатор DR3, мощный N канальный полевик VT2(может быть любым используемый в цепях питания) и диодная сборка VD2. Трансформатор VD3 изготовил из такого же трансформатора с того самого БП. Кольцо из пресспермалоя, желтого цвета. 27мм. Первичную обмотку набил проводом 2мм 22 витка, вторичную обмотку намотал проводом тоньше, 0,55мм 44 витка.
Индуктивности DR1 DR2 типа гантелька взял как есть из БП. Индуктивность типа пенёк DR4 тоже самое. Транзистор и диод разместил на радиаторе от того же БП.
Всё собрал на печатной плате собственной разработки. В ходе лабораторных испытаний пришлось внести изменения в предложенную автором схему. Дело в том что сам автор указывает на то что резистор R5 греется, даже замена на более мощный резистор проблему не решает. В течении часа резистор этот у меня почернел и обуглился. Решил попробовать увеличить сопротивление до 2,2кОм и всё греться он перестал. Транзистор VT1, перестраховался, заменил на более мощный. Трансформатор DR3 тоже сначала не много грелся, перемотал, добавил количество витков в первичную и во вторичную обмотки, стало 30 и 60. Не знаю что там с фронтами открытия полевого транзистора но схема работает нормально, при нагрузке в 2А устройство остаётся холодным. Радиаторы на транзистор и диод можно большие не ставить. Поставил на выходе +5В ферритовое кольцо, для уменьшения помех.

Читайте также:
Схема тестовой нагрузки для проверки ЗУ

Вот мой первый, рабочий, испытательный прототип.

Испытание на сопротивление 1Ом сопротивление быстро нагрелось сила тока на фото.

И последние, кипятильник на 5В в работе. Смотрите силу тока на фото. Да вот тут уже начали греться транзистор с диодом.

Испытывал свой преобразователь на 5А работал почти весь день так немного тёплый. Потом нашёл старый блок питания от монитора которого уже нет. Плату пустил в разбор, в корпус уместил свою схему. Транзистор и диод расположил на кулере от старого ноутбука. В противоположной стороне коробки просверлил ряд отверстий. Очень даже получилось ничего. Воздух будет прокачиваться через всю схему.

Готовое устройство на установку в автомобиль.

Розетки двойные под USB планирую врезать в одну в переднюю панель вместо кнопки-зглушки и вторую к задним пассажирам в подлокотник передних сидений. Также думаю одинарную розетку в панель передней левой стойки и подвести питание к видеорегистратору который находится у зеркала. По данной схеме можно собрать вообще универсальный блок питания, то есть добавить каскад преобразования из 12В в 19В для питания ноутбука, что планирую в будущем.

Преобразователь напряжения 12-5В своими руками

В настоящее время импульсные преобразователи используются практически везде и всё чаще заменяют классические линейные стабилизаторы, на которых при больших токах выделяется значительная мощность в виде тепловых потерь. Предлагаемая схема является простым понижающим преобразователем Step-Down с напряжения 12 В на стандартное для USB 5 В и собирается она на основе популярной микросхемы LM2576T.

Устройство предназначено для работы с автомобильной проводкой 12 В и может использоваться для зарядки или питания GPS-навигаторов, мобильных телефонов, планшетов оснащенных разъемом USB.

В состоянии покоя система полностью отключена от питания авто, а во время работы выключается сразу же после отключения тока, потребляемого с его выхода (например, при отключении провода от USB-разъема). Запуск системы осуществляется через кратковременное нажатие на кнопку, но если в данный момент выход не подключен – преобразователь снова автоматически выключится.

Принципиальная схема преобразователя LM2576T

Преобразователь напряжения 12-5В своими руками

Основой является уже упомянутый ранее чип U1 (LM2576T-ADJ), дроссель L1 (100uH) и диод Шоттки D1 (1N5822). Конденсатор C1 (100uF) фильтрует напряжение питания. Выходной фильтр представляет собой конденсатор C4 (470uF), а стабилитрон D4 (BZX85C5V1) мощностью 1.3 Ватт может защитить систему от возможного кратковременного повышения напряжения питания (жалко будет спалить дорогой смартфон из-за случайных ошибок).

Принцип действия устройства

Для начала стоит написать несколько слов о самой микросхеме LM2576T – контроллере преобразователя. Схема обеспечивает превосходную альтернативу для типовых 3-х контактных линейных стабилизаторов семейства LM317, предлагая гораздо более высокую эффективность и позволяя снизить потери. Очень большое преимущество микросхемы LM2576T – возможность отключения и перехода в режим Standby, в котором потребляемый ток всего 50 мкА. Эта функция не используется в данной схеме преобразователя, но стоит иметь в виду на будущее. LM2576T содержит в своем составе все необходимые компоненты для преобразователя, вместе с силовым транзисторным ключом, который может работать с токами до 3 А. Сборка требует подключения только нескольких внешних компонентов.

Важным элементом является делитель напряжения R10 (1,2 k), R11 (3,6 к), так как он отвечает за величину выходного напряжения. Степень деления подобрана так, чтобы при выходном напряжении 5 В на входе компаратора микросхемы U1 присутствовало напряжение 1.23 В. Внутренний компаратор микросхемы управляет транзистором, чтобы напряжение на выходе достигло нужного значения. Всё это дело стабилизирует напряжение и при изменении тока нагрузки.

Преимуществом данной схемы является возможность автоматического выключения питания после отключения тока, потребляемого от преобразователя. Отвечает за это транзистор T1 (BD140), а также резисторы R6 (10k) и R4 (1k). В выключенном состоянии резистор R6 обеспечивает правильное отключение транзистора T1. Запуск системы осуществляется через кратковременное замыкание кнопки S1 (типа сенсорная). Преобразователь включается, а транзистор T4 (2N7000) поддерживает далее низкий потенциал на базе T1. Резистор R4 ограничивает ток базы транзистора Т1.

Читайте также:
Защита от переполюсовки, преобразователя 12-220

Для контроля тока потребляемого нагрузкой, используется операционный усилитель U2 (LM358), в котором задействуется только одна половина. Он работает с усилением, равным 1000, установленным через резисторы R12 (100k) и R13 (100 Ом). Конденсатор C2 (100nF) фильтрует напряжение питания усилителя. Для управления транзистором T4 используется делитель напряжения R9 (10k), R7 (10k), осуществляющий деление выходного напряжения ОУ на 2.

Незначительное падение напряжения на измерительном резисторе R14 (0,2 Ома) порядка 5 мВ, нужно для поддержания работы преобразователя. Таким образом, для поддержания включенного состояния инвертора, достаточно потребляемого нагрузкой тока 25 мА.

Двухцветный светодиод D2 выполняет роль индикатора питания.

Когда же напряжение на выходе слишком высокое, открывается стабилитрон D3 (BZX55C5V1), а на резисторе R8 (2,2 k) появляется потенциал, достаточный для открытия транзистора T3 (2N7000). Сразу T2 (2N7000) будет закрыт и загорится красный светодиод. Ток светодиодов ограничен через резисторы R2 (560 Ом) и R3 (1k). При нормальной работе транзистор T2 пропускает ток (через R5) и горит зеленый светодиод.

Печатная плата инвертора 12/5 вольт

Преобразователь напряжения 12-5В своими руками

Печатная плата в PDF доступна для скачивания по ссылке всем посетителям сайта 2 Схемы. Монтаж преобразователя не сложен, все помещается на односторонней печатке. Пайку следует начинать с маленьких радиоэлементов – резисторов, потом диоды, транзисторы, и заканчивая конденсаторами и разъемами. Под микросхему не следует использовать панельки, особенно если система будет работать в автомобиле, так как из-за вибраций м/с может вылететь из гнезда. Если схема будет работать постоянно и в сложных условиях, без притока воздуха, то стоит прикрутить небольшой радиатор (кусок пластины) на транзистор Т1.

Как упростить конструкцию

Как уже говорилось, DC-DC инвертор имеет функцию автоматического отключения. Но можно при желании от нее отказаться, что неплохо упростит конструкцию. Резистор R14 тогда надо заменить перемычкой, а операционный усилитель U2 и элементы, которые с ним работают, не будут нужны вообще. Не нужна также установка транзистора T4. Вместо кнопки можно использовать любой переключатель соответствующей мощности, что позволит включить преобразователь тумблером. В случае, если схема будет работать в постоянном режиме, не нужен и транзистор T1 – соедините его эмиттер с коллектором с помощью перемычки.

DC-DC конвертер 12В – 5В 3А 15Вт

Всем привет! Это не обзор, а так сказать, мини-тест DC-DC конвертера 12В — 5В 3А. Подобный преобразователь напряжения уже рассматривался на Mysku (к сожалению, я его не смог найти, но надеюсь, что всё-таки найду), и тот обзор склонил меня к покупке аналогичного DC-DC конвертера, но у другого продавца, и немного другого исполнения, поэтому речь пойдёт об различиях этих моделей.

С момента заказа прошло ровно три недели, и преобразователи приехали ко мне в мелком пакете. Трэк-номера мне не дали. Вот фото:


Надо сказать, что заказывая эти преобразователи, я планировал их немного переделать, а именно изменить цепь, задающую выходное напряжение, чтобы получить на выходе напряжение 3,3в, при нужном мне токе не более 1А. Что мне удастся это сделать, я был просто уверен.

Читайте также:
Адаптер для зарядки ноутбука в автомобиле

Первым делом я снял с одного преобразователя заднюю крышку, чтобы вынуть печатную плату и надругаться над ней. И тут меня ждало горькое разочарование! Печатная плата со всем содержимым была залита жёстким непрозрачным компаундом, из которого торчали только входные и выходные провода! Это было очень неожиданно и неприятно. По этой причине фотографий с расчленёнкой не будет, как не будет и переделки преобразователя на 3,3 вольта. Но главное, что когда я ещё раз внимательно прочитал описание конвертера на сайте, то понял, что он и должен быть залитым, это указано прямым текстом. В общем сам дрова.

Вот фотки со снятой нижней крышкой, правда фоткал на сей раз мобльником.



Что там у преобразователя внутри, совершенно непонятно, а очень хотелось бы знать. Единственное, что удалось разглядеть, так это слегка выступающий из компаунда уголок электролитического конденсатора, зелёного с золотым, то есть вроде не самого плохого, но то, что он стоит так криво, совсем не радует. Общая глубина заливки порядка 12мм, то есть плата с элементами имеет высоту не более 10мм. Компаунд жёсткий, эпоксидный, как и говорится на сайте, но если заливка выполнена без предварительного обволакивания, то есть вероятность растрескивания элементов конвертера. Как правило производители даже пассивных компонентов запрещают прямую заливку «жёсткими» компаундами.

Оставалось только испытать преобразователь как есть, так как применение для него, в принципе, уже найдено. Погонял я его в трёх режимах, на выходном токе в 1А, 2А и 3А, при входном напряжении от 12 до 17 вольт. При токе в 1А нагрев незначительный, при токе в 2А нагрев уже заметный, причём, видимо, теплопроводность компаунда выше, чем пластика, и снаружи преобразователь куда холоднее, чем если пощупать сам компаунд. Думаю, при токе в 2А преобразователь может работать неограниченно долго даже при повышенной до 40-50 градусов внешней температуре. При токе нагрузки в 3А преобразователь нагревался очень заметно снаружи, а прикосновение к компаунду уже обжигало, так что я бы не стал использовать его долгое время в таком режиме, да ещё при повышенной температуре. 2А для многих применений достаточно.

Напряжение на выходе было очень стабильным, без нагрузки составляло 5,12в, с нагрузкой 1А — 5,10В, с нагрузкой 2А — 5,08В, с нагрузкой 3А — 5,07В. Думаю, это больше влияло сопротивление проводов, а у самого преобразователя просадка вообще практически нулевая.

Испытал также, какое минимальное напряжение на входе преобразователя. Так, при токе нагрузки в 2А напряжение на выходе начинало снижаться при снижении входного напряжения ниже 7 вольт. По моему нормально.

Обзор и тестирование DC-DC модуля на чипе ME2188A

В этом обзоре речь пойдёт об энергоэффективном повышающем DC-DC преобразователе на 3,3 В, выполненном в виде миниатюрного модуля размером всего 10х10 мм. Преобразователь сделан на специализированном чипе ME2188A и предназначен для питания различной автономной электроники, в том числе и популярных DIY решений на nRF24L01, LoRa модулях, ESP8266 и т. д.

Я дам общий обзор чипа ME2188A и проведу тестирование описываемого модуля в различных режимах, а затем проанализирую результаты и сделаю выводы о практической применимости данного модуля для питания энергоэффективных (батарейных) DIY устройств.

▍ Чип ME2188A

Прежде чем приступать к тестированию модуля, давайте познакомимся с самой микросхемой ME2188A.

Согласно информации из даташита, серия микросхем ME2188 — это повышающие DC/DC PFM (Pulse Frequency Modulation) преобразователи с низким током покоя и низкими пульсациями выходного напряжения, выполненные по CMOS технологии и работающие на частоте 350 кГц, предназначенные для использования в приборах с батарейным питанием.

Читайте также:
Заряжаем ноутбук от прикуривателя

Основные заявленные характеристики чипов ME2188 серии:

  • Эффективность: до 95%
  • Частота преобразования: 350 КГц
  • Ток покоя: 13 мкА
  • Входное напряжение: 0,9-5,0 В
  • Выходное напряжение: 3,3 В (есть другие варианты ME2188A на 1,8-5,0 В)
  • Точность: ± 2%
  • Низкие пульсации и шумы
  • Выпускаются в корпусах: SOT23-3, SOT23-5, SOT23, SOT89-3, TO-92

image

В рассматриваемом модуле применён чип ME2188A в корпусе SOT89-3:

1 – GND, 2 – OUT, 3 – IN

Как вы видите, типовая схема применения чипа ME2188 очень простая и требуется добавить всего лишь два конденсатора и одну индуктивность для работы всей системы питания. Теперь давайте протестируем модуль и посмотрим как дела с ним обстоят в реальности.

▍ Модуль на ME2188A

Дизайн модуля крайне прост и повторяет типовую схему. Правда бросаются в глаза и различия: вместо одного конденсатора и на входе и на выходе стоят по два конденсатора, судя по всему, запараллеленных. Также в даташите упоминаются танталовые конденсаторы, а в модуле мы видим керамические. Имеют ли эти нюансы какое-то значение сказать трудно, но в дальнейшем мы увидим, что в работе модуля есть некоторые проблемы, возможно это связано с этими отхождениями от референсного дизайна.

На приведённом фото виден очень маленький размер модуля, что позволяет встраивать его в различные миниатюрные батарейные устройства. Размер модуля 10,7×10,6 мм.

Далее мы переходим к тестированию и выяснению реальных характеристик нашего модуля.

▍ Тестирование

Тестировать модуль я буду с привлечением тяжёлой артиллерии в виде цифрового лабораторного блока питания, тестера, электронной нагрузки и осциллографа, так что ему не удастся скрыть от нас свои недостатки.

В план тестирования будет входить:

  • выяснение напряжения старта модуля;
  • выходные напряжения во всём диапазоне входных при холостом ходе;
  • токи потребления во всём диапазоне входных напряжений;
  • выяснение нагрузочной способности в зависимости от входного напряжения;
  • ток потребления при изменении величины нагрузки;
  • и прочие тесты.

Вставляем модуль в макетную плату.

Добавляем провода и делаем мини-стенд для дальнейшей работы (на фото модуль «спрятался» за проводами).

▍ Выходное напряжение холостого хода

В этом тесте мы пройдёмся по всему заявленному диапазону входных напряжений и посмотрим как меняется выходное напряжение модуля и сделаем соответствующие выводы.

Таблица выходных напряжений холостого хода:

0,8 — срыв работы
0,9 — 3,29 В
1,0 — 3,29 В
1,1 — 3,29 В
1,2 — 3,29 В
1,3 — 3,29 В
1,4 — 3,29 В
1,5 — 3,30 В
1,6 — 3,30 В
1,7 — 3,30 В
1,8 — 3,30 В
1,9 — 3,30 В
2,0 — 3,30 В
2,1 — 3,30 В
2,2 — 3,31 В
2,3 — 3,31 В
2,4 — 3,31 В
2,5 — 3,32 В
2,6 — 3,32 В
2,7 — 3,32 В
2,8 — 3,34 В
2,9 — 3,35 В
3,0 — 3,36 В
3,1 — 3,37 В (нестабильно, колебания ± 0,1 В)
3,2 — 3,38 В (нестабильно, колебания ± 0,2 В)
3,3 — 3,39 В (нестабильно, колебания ± 0,3 В)

Как мы видим, при 0,8 вольтах на входе происходит срыв работы модуля и выходное напряжение критически падает. То есть напряжение 0,8 вольт модуль не поддерживает. И поскольку это граница диапазона, то и ближайшее напряжение 0,9 вольт тоже на практике использовать нельзя — возможны срывы питания. Отсюда можно сделать вывод, что реальная нижняя граница входного напряжения модуля примерно 1,0 В.

Читайте также:
Зарядное устройство для автомобиля на основе готового модуля

Также мы видим, что при росте входного напряжения постепенно растёт и выходное.

После перехода входным напряжением границы в 3,0 вольта выходное напряжение становится нестабильным и начинает «скакать», правда в допустимых границах, но сами скачки ничего хорошего питаемой электронике не сулят. Получается, что верхний разумный предел входного напряжения этого модуля 3,0 вольта и этот предел лучше не превышать (при работе в ненагруженных режимах).

В целом, по этому тесту можно сказать, что модуль успешно его прошёл.

▍ Ток потребления холостого хода

Теперь выясним ток потребления модуля во всём заявленном диапазоне входных напряжений. Это тест, который покажет нам насколько хорошо модуль работает на холостом ходу. Напомню, что производитель обещает нам ток потребления 13 мкА.

Таблица токов потребления холостого хода:

0,8 — 41 мкА
0,9 — 36 мкА
1,0 — 29 мкА
1,1 — 27 мкА
1,2 — 26 мкА
1,3 — 25 мкА
1,4 — 23 мкА
1,5 — 22 мкА
1,6 — 22 мкА
1,7 — 22 мкА
1,8 — 21 мкА
1,9 — 20 мкА
2,0 — 19 мкА
2,1 — 17 мкА
2,2 — 14 мкА
2,3 — 14 мкА
2,4 — 14 мкА
2,5 — 14 мкА
2,6 — 14 мкА
2,7 — 14 мкА
2,8 — 14 мкА
2,9 — нестабильно, колебания 0-20 мкА
3,0 — нестабильно, колебания 0-20 мкА
3,1 — нестабильно, колебания 0-20 мкА
3,2 — нестабильно, колебания 0-20 мкА
3,3 — нестабильно, колебания 0-20 мкА

Тут тоже выявляются некоторые интересные закономерности. Видно, что на нижнем краю диапазона (0,8-0,9 В) начинает расти ток потребления, а на верхнем краю ток начинает «прыгать», что согласуется с результатами предыдущего теста и подтверждает вывод о том, что реальный рабочий диапазон модуля 1,0-3,0 вольт.

С другой стороны, колебания тока потребления на верхней границе диапазона в данном случае могут не являться дефектом, а обусловлены работой PFM технологии накопления и отдачи энергии (что не оправдывает нестабильность выходного напряжения).

Также мы видим, что заявленные 13 мкА потребления проявляются только в диапазоне входных напряжений 2,2-2,8 вольт. Но даже разброс 14-29 мкА можно считать неплохим результатом (для батарейного питания DIY устройств).

▍ Нагрузочный тест и КПД

Теперь давайте проверим поведение модуля при различной нагрузке, его КПД и входное потребление. Этот тест покажет нам насколько модуль применим для питания различных практических схем.

В качестве неизменного входного напряжения выберем середину его диапазона — 2 вольта. Вот таблица результатов измерений в этом режиме:

Оранжевым цветом выделены значения КПД, выходящие за рамки заявленных минимальных 70 процентов, а красным выделен результат, когда КПД драматически падает до 23 процентов.

Как видно из приведённой таблицы, сколько-нибудь приемлемым током потребления для нашего модуля можно считать 130 мА, далее происходит откровенная катастрофа — КПД падает до 23 процентов, а входной ток возрастает до 600 мА (!). И это в середине рабочего диапазона входных напряжений, а по краям всё будет совсем плохо (это мы протестируем чуть позже).

В результате этого теста можно сделать вывод, что модуль в реальности поддерживает максимум 130 мА тока потребления, что никак не согласуется с цифрами в 600 мА на сайте продавца и в даташите. Это важный момент и далее мы попробуем подробнее разобраться с нагрузочной способностью рассматриваемого модуля.

Читайте также:
ЗУ для малогабаритных аккумуляторов

▍ Подробнее о нагрузочной способности модуля

Теперь посмотрим зависимость нагрузочной способности модуля от питающего напряжения. Как вы понимаете, это важный тест, поскольку показывает как будет вести себя модуль (а вместе с ним и ваше устройство) при падении напряжения на питающих батареях.

0,9 — 20 мА (3,2 В) нестабильно
1,0 — 30 мА (3,2 В)
1,1 — 40 мА (3,1 В)
1,2 — 50 мА (3,1 В)
1,3 — 60 мА (3,1 В)
1,4 — 70 мА (3,1 В)
1,5 — 75 мА (3,1 В)
1,6 — 80 мА (3,1 В)
1,7 — 90 мА (3,1 В)
1,8 — 95 мА (3,1 В)
1,9 — 100 мА (3,1 В)
2,0 — 105 мА (3,1 В)
2,1 — 110 мА (3,1 В)
2,2 — 110 мА (3,09 В)
2,3 — 120 мА (3,07 В)
2,4 — 130 мА (3,06 В)
2,5 — 140 мА (3,05 В)
2,6 — 150 мА (3,04 В)
2,7 — 160 мА (3,03 В)
2,8 — 170 мА (3,02 В)
2,9 — 175 мА (3,01 В)
3,0 — 180 мА (3,0 В)

Или то же самое, но в графическом виде:

За критическое падение напряжения на выходе принято значение 3,0 вольта (это примерно 10% от номинала). Видно, что тут увеличивается предел нагрузочной способности модуля при повышении питающего напряжения. Но всё равно его предел — это 180 мА, а учитывая, что мы имеем дело с батарейками, которые имеют тенденцию к разрядке, то реальную нагрузочную способность вашего устройства нужно выбирать из диапазона 1,0-2,0 вольт.

Тут вступают в противоречие два параметра — напряжение на батареях и ток потребления вашей схемы (устройства) — и тут придётся находить баланс между двумя этими параметрами.

В реальности это 80 мА и падение напряжения до 1,6 вольта, а учитывая, что это предельные значения, то реалистичным будет вариант 70 мА и 1,6 вольта.

То есть, другими словами, и говоря немного проще: что-то вроде nRF24L01 и в некоторых режимах LoRa вы запитать от этого модуля сможете, а вот, например, ESP8266 — уже нет.

▍ Пульсации выходного напряжения

На скриншоте ниже представлена осциллограмма выходного напряжения тестируемого модуля под нагрузкой. Видны пульсации амплитудой чуть больше 20 мВ, что можно считать приемлемым значением в большинстве случаев.

▍ Особые замечания

В процессе тестирования и работы с модулем было замечено, что в случае выхода входных или выходных параметров за граничные критические значения, работа модуля становится нестабильной. Поэтому особое внимание стоит уделять этапу проектирования вашего устройства и режимам его работы, чтобы избежать ситуации сваливания модуля «в штопор».

▍ Выводы

Подводя итог этого обзора, можно сказать, что, в принципе, этот модуль на чипе ME2188 имеет право на существование и его можно использовать в ваших энергоэффективных устройствах, но для его использования нужно учитывать его особенности и хорошо понимать, что и зачем вы делаете. А этот обзор и проведённое тестирование помогут вам в выборе правильного решения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: